6 resultados para Information Architecture

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This Thesis addresses the problem of automated false-positive free detection of epileptic events by the fusion of information extracted from simultaneously recorded electro-encephalographic (EEG) and the electrocardiographic (ECG) time-series. The approach relies on a biomedical case for the coupling of the Brain and Heart systems through the central autonomic network during temporal lobe epileptic events: neurovegetative manifestations associated with temporal lobe epileptic events consist of alterations to the cardiac rhythm. From a neurophysiological perspective, epileptic episodes are characterised by a loss of complexity of the state of the brain. The description of arrhythmias, from a probabilistic perspective, observed during temporal lobe epileptic events and the description of the complexity of the state of the brain, from an information theory perspective, are integrated in a fusion-of-information framework towards temporal lobe epileptic seizure detection. The main contributions of the Thesis include the introduction of a biomedical case for the coupling of the Brain and Heart systems during temporal lobe epileptic seizures, partially reported in the clinical literature; the investigation of measures for the characterisation of ictal events from the EEG time series towards their integration in a fusion-of-knowledge framework; the probabilistic description of arrhythmias observed during temporal lobe epileptic events towards their integration in a fusion-of-knowledge framework; and the investigation of the different levels of the fusion-of-information architecture at which to perform the combination of information extracted from the EEG and ECG time-series. The performance of the method designed in the Thesis for the false-positive free automated detection of epileptic events achieved a false-positives rate of zero on the dataset of long-term recordings used in the Thesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research was conducted at the Space Research and Technology Centre o the European Space Agency at Noordvijk in the Netherlands. ESA is an international organisation that brings together a range of scientists, engineers and managers from 14 European member states. The motivation for the work was to enable decision-makers, in a culturally and technologically diverse organisation, to share information for the purpose of making decisions that are well informed about the risk-related aspects of the situations they seek to address. The research examined the use of decision support system DSS) technology to facilitate decision-making of this type. This involved identifying the technology available and its application to risk management. Decision-making is a complex activity that does not lend itself to exact measurement or precise understanding at a detailed level. In view of this, a prototype DSS was developed through which to understand the practical issues to be accommodated and to evaluate alternative approaches to supporting decision-making of this type. The problem of measuring the effect upon the quality of decisions has been approached through expert evaluation of the software developed. The practical orientation of this work was informed by a review of the relevant literature in decision-making, risk management, decision support and information technology. Communication and information technology unite the major the,es of this work. This allows correlation of the interests of the research with European public policy. The principles of communication were also considered in the topic of information visualisation - this emerging technology exploits flexible modes of human computer interaction (HCI) to improve the cognition of complex data. Risk management is itself an area characterised by complexity and risk visualisation is advocated for application in this field of endeavour. The thesis provides recommendations for future work in the fields of decision=making, DSS technology and risk management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the optimisation of Shannon mutual information (MI) in the context of two model neural systems The first is a stochastic pooling network (population) of McCulloch-Pitts (MP) type neurons (logical threshold units) subject to stochastic forcing; the second is (in a rate coding paradigm) a population of neurons that each displays Poisson statistics (the so called 'Poisson neuron'). The mutual information is optimised as a function of a parameter that characterises the 'noise level'-in the MP array this parameter is the standard deviation of the noise, in the population of Poisson neurons it is the window length used to determine the spike count. In both systems we find that the emergent neural architecture and; hence, code that maximises the MI is strongly influenced by the noise level. Low noise levels leads to a heterogeneous distribution of neural parameters (diversity), whereas, medium to high noise levels result in the clustering of neural parameters into distinct groups that can be interpreted as subpopulations In both cases the number of subpopulations increases with a decrease in noise level. Our results suggest that subpopulations are a generic feature of an information optimal neural population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling architectural information is particularly important because of the acknowledged crucial role of software architecture in raising the level of abstraction during development. In the MDE area, the level of abstraction of models has frequently been related to low-level design concepts. However, model-driven techniques can be further exploited to model software artefacts that take into account the architecture of the system and its changes according to variations of the environment. In this paper, we propose model-driven techniques and dynamic variability as concepts useful for modelling the dynamic fluctuation of the environment and its impact on the architecture. Using the mappings from the models to implementation, generative techniques allow the (semi) automatic generation of artefacts making the process more efficient and promoting software reuse. The automatic generation of configurations and reconfigurations from models provides the basis for safer execution. The architectural perspective offered by the models shift focus away from implementation details to the whole view of the system and its runtime change promoting high-level analysis. © 2009 Springer Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the existing work on information integration in the Semantic Web concentrates on resolving schema-level problems. Specific issues of data-level integration (instance coreferencing, conflict resolution, handling uncertainty) are usually tackled by applying the same techniques as for ontology schema matching or by reusing the solutions produced in the database domain. However, data structured according to OWL ontologies has its specific features: e.g., the classes are organized into a hierarchy, the properties are inherited, data constraints differ from those defined by database schema. This paper describes how these features are exploited in our architecture KnoFuss, designed to support data-level integration of semantic annotations.