3 resultados para Inflation rate forecast
em Aston University Research Archive
Resumo:
This paper describes how modern machine learning techniques can be used in conjunction with statistical methods to forecast short term movements in exchange rates, producing models suitable for use in trading. It compares the results achieved by two different techniques, and shows how they can be used in a complementary fashion. The paper draws on experience of both inter- and intra-day forecasting taken from earlier studies conducted by Logica and Chemical Bank Quantitative Research and Trading (QRT) group's experience in developing trading models.
Resumo:
This article presents out-of-sample inflation forecasting results based on relative price variability and skewness. It is demonstrated that forecasts on long horizons of 1.5-2 years are significantly improved if the forecast equation is augmented with skewness. © 2010 Taylor & Francis.
Resumo:
This paper demonstrates a mechanism whereby rules can be extracted from a feedforward neural network trained to characterize the inflation "pass-through" problem in American monetary policy, defined as the relationship between changes in the growth rate(s) of individual commodities and the economy-wide rate of growth of consumer prices. Monthly price data are encoded and used to train a group of candidate connectionist architectures. One candidate is selected for rule extraction, using a custom decompositional extraction algorithm that generates rules in human-readable and machine-executable form. Rule and network accuracy are compared, and comments are made on the relationships expressed within the discovered rules. The types of discovered relationships could be used to guide monetary policy decisions.