1 resultado para Inequality constraints
em Aston University Research Archive
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (14)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (22)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Boston University Digital Common (5)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (68)
- CentAUR: Central Archive University of Reading - UK (72)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (39)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (50)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Cornell: DigitalCommons@ILR (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Greenwich Academic Literature Archive - UK (10)
- Helda - Digital Repository of University of Helsinki (12)
- Indian Institute of Science - Bangalore - Índia (91)
- Instituto Politécnico do Porto, Portugal (5)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (107)
- Queensland University of Technology - ePrints Archive (114)
- Repositório digital da Fundação Getúlio Vargas - FGV (44)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (99)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Universidad del Rosario, Colombia (10)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (8)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (4)
- WestminsterResearch - UK (2)
Resumo:
A simple method for training the dynamical behavior of a neural network is derived. It is applicable to any training problem in discrete-time networks with arbitrary feedback. The method resembles back-propagation in that it is a least-squares, gradient-based optimization method, but the optimization is carried out in the hidden part of state space instead of weight space. A straightforward adaptation of this method to feedforward networks offers an alternative to training by conventional back-propagation. Computational results are presented for simple dynamical training problems, with varied success. The failures appear to arise when the method converges to a chaotic attractor. A patch-up for this problem is proposed. The patch-up involves a technique for implementing inequality constraints which may be of interest in its own right.