16 resultados para Industrial network security
em Aston University Research Archive
Resumo:
This paper determines the capability of two photogrammetric systems in terms of their measurement uncertainty in an industrial context. The first system – V-STARS inca3 from Geodetic Systems Inc. – is a commercially available measurement solution. The second system comprises an off-the-shelf Nikon D700 digital camera fitted with a 28 mm Nikkor lens and the research-based Vision Measurement Software (VMS). The uncertainty estimate of these two systems is determined with reference to a calibrated constellation of points determined by a Leica AT401 laser tracker. The calibrated points have an average associated standard uncertainty of 12·4 μm, spanning a maximum distance of approximately 14·5 m. Subsequently, the two systems’ uncertainty was determined. V-STARS inca3 had an estimated standard uncertainty of 43·1 μm, thus outperforming its manufacturer's specification; the D700/VMS combination achieved a standard uncertainty of 187 μm.
Resumo:
The protection of cyberspace has become one of the highest security priorities of governments worldwide. The EU is not an exception in this context, given its rapidly developing cyber security policy. Since the 1990s, we could observe the creation of three broad areas of policy interest: cyber-crime, critical information infrastructures and cyber-defence. One of the main trends transversal to these areas is the importance that the private sector has come to assume within them. In particular in the area of critical information infrastructure protection, the private sector is seen as a key stakeholder, given that it currently operates most infrastructures in this area. As a result of this operative capacity, the private sector has come to be understood as the expert in network and information systems security, whose knowledge is crucial for the regulation of the field. Adopting a Regulatory Capitalism framework, complemented by insights from Network Governance, we can identify the shifting role of the private sector in this field from one of a victim in need of protection in the first phase, to a commercial actor bearing responsibility for ensuring network resilience in the second, to an active policy shaper in the third, participating in the regulation of NIS by providing technical expertise. By drawing insights from the above-mentioned frameworks, we can better understand how private actors are involved in shaping regulatory responses, as well as why they have been incorporated into these regulatory networks.
Resumo:
This paper reports the initial results of a joint research project carried out by Aston University and Lloyd's Register to develop a practical method of assessing neural network applications. A set of assessment guidelines for neural network applications were developed and tested on two applications. These case studies showed that it is practical to assess neural networks in a statistical pattern recognition framework. However there is need for more standardisation in neural network technology and a wider takeup of good development practice amongst the neural network community.
Resumo:
Academic researchers have followed closely the interest of companies in establishing industrial networks by studying aspects such as social interaction and contractual relationships. But what patterns underlie the emergence of industrial networks and what support should research provide for practitioners? Firstly, it appears that manufacturing is becoming a commodity rather than a unique capability, which accounts especially for low-technology approaches in downstream parts of the network, for example in assembly operations. Secondly, the increased tendency towards specialization has forced other, upstream, parts of industrial networks to introduce advanced manufacturing technologies to supply niche markets. Thirdly, the capital market for investments in capacity, and the trade in manufacturing as a commodity, dominates resource allocation to a larger extent than previously was the case. Fourthly, there is a continuous move towards more loosely connected entities that comprise manufacturing networks. More traditional concepts, such as the “keiretsu” and “chaibol” networks of some Asian economies, do not sufficiently support the demands now being placed on networks. Research should address these four fundamental challenges to prepare for the industrial networks of 2020 and beyond.
Resumo:
Data Envelopment Analysis (DEA) is one of the most widely used methods in the measurement of the efficiency and productivity of Decision Making Units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper proposes a neural network back-propagation Data Envelopment Analysis to address this problem for the very large scale datasets now emerging in practice. Neural network requirements for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of large datasets. Finally, the back-propagation DEA algorithm is applied to five large datasets and compared with the results obtained by conventional DEA.
Resumo:
The present paper examines the issue of whether interpersonal relationships are critical for global marketing of industrial products. The fields of relationship marketing, IMP group research, sales research, and network theory have stressed the importance of interpersonal relationships in the business-to-business or industrial marketing context. In contrast to this emphasis on interpersonal relationships, we argue that industrial firms can both conceive and enhance marketing strategies based on developing high quality and consistent processes, products, services or outcomes (consistent processes and outcomes). Such strategies are especially important given the fact that developing interpersonal relationships is expensive due to their reliance on frequent and/or face-to-face communications. In this paper, we examine industry and country contexts that lead to the choice of alternative industrial product marketing strategies and highlight some future research directions and managerial implications.
Resumo:
The application of high-power voltage-source converters (VSCs) to multiterminal dc networks is attracting research interest. The development of VSC-based dc networks is constrained by the lack of operational experience, the immaturity of appropriate protective devices, and the lack of appropriate fault analysis techniques. VSCs are vulnerable to dc-cable short-circuit and ground faults due to the high discharge current from the dc-link capacitance. However, faults occurring along the interconnecting dc cables are most likely to threaten system operation. In this paper, cable faults in VSC-based dc networks are analyzed in detail with the identification and definition of the most serious stages of the fault that need to be avoided. A fault location method is proposed because this is a prerequisite for an effective design of a fault protection scheme. It is demonstrated that it is relatively easy to evaluate the distance to a short-circuit fault using voltage reference comparison. For the more difficult challenge of locating ground faults, a method of estimating both the ground resistance and the distance to the fault is proposed by analyzing the initial stage of the fault transient. Analysis of the proposed method is provided and is based on simulation results, with a range of fault resistances, distances, and operational conditions considered.
Resumo:
Academic researchers have followed closely the interest of companies in establishing industrial networks by studying aspects such as social interaction and contractual relationships. But what patterns underlie the emergence of industrial networks and what support should research provide for practitioners? First, it appears that manufacturing is becoming a commodity rather than a unique capability, which accounts especially for low-technology approaches in downstream parts of the network, for example, in assembly operations. Second, the increased tendency towards specialisation has forced other, upstream, parts of industrial networks to introduce advanced manufacturing technologies for niche markets. Third, the capital market for investments in capacity, and the trade in manufacturing as a commodity, dominates resource allocation to a larger extent than was previously the case. Fourth, there is becoming a continuous move towards more loosely connected entities that comprise manufacturing networks. Finally, in these networks, concepts for supply chain management should address collaboration and information technology that supports decentralised decision-making, in particular to address sustainable and green supply chains. More traditional concepts, such as the keiretsu and chaibol networks of some Asian economies, do not sufficiently support the demands now being placed on networks. Research should address these five fundamental challenges to prepare for the industrial networks of 2020 and beyond. © 2010 Springer-Verlag London.
Resumo:
Academia has followed the interest by companies in establishing industrial networks by studying aspects such as social interaction and contractual relationships. But what patterns underlie the emergence of industrial networks and what support should research provide for practitioners? Firstly, it seems that manufacturing is becoming a commodity rather than a unique capability, which accounts especially for low-technology approaches in downstream parts of the network, for example in assembly operations. Secondly, the increased tendency to specialize forces other parts of industrial networks to introduce advanced manufacturing technologies for niche markets. Thirdly, the capital market for investments in capacity and the trade in manufacturing as a commodity dominates resource allocation to a larger extent. Fourthly, there will be a continuous move toward more loosely connected entities forming manufacturing networks. More traditional concepts, like keiretsu and chaibol networks, do not sufficiently support this transition. Research should address these fundamental challenges to prepare for the industrial networks of 2020 and beyond.
Resumo:
Collaboration among enterprises has been rendered as one of the most important issues in the business agenda, either as a result of the globalisation and deregulation of markets or as a result of the Information and Communication Technology (ICT) revolution. Both factors have created a business reality where success in the collaboration practices followed, may result in improvements in the competitive position of enterprises. This paper starts from the basic business activity of the individual enterprise, looks into the chain, network and cluster collaborative practices and analyses their characteristics and the implications for Small-Medium Enterprises (SMEs). In addition, it provides insights regarding the opportunities, benefits, requirements and risks related to each collaborative practice. This paper finally argues that different collaboration practices are required, as enterprises and the industrial sectors where they operate, present distinctive characteristics.
Learning and change in interorganizational networks:the case for network learning and network change
Resumo:
The ALBA 2002 Call for Papers asks the question ‘How do organizational learning and knowledge management contribute to organizational innovation and change?’. Intuitively, we would argue, the answer should be relatively straightforward as links between learning and change, and knowledge management and innovation, have long been commonly assumed to exist. On the basis of this assumption, theories of learning tend to focus ‘within organizations’, and assume a transfer of learning from individual to organization which in turn leads to change. However, empirically, we find these links are more difficult to articulate. Organizations exist in complex embedded economic, political, social and institutional systems, hence organizational change (or innovation) may be influenced by learning in this wider context. Based on our research in this wider interorganizational setting, we first make the case for the notion of network learning that we then explore to develop our appreciation of change in interorganizational networks, and how it may be facilitated. The paper begins with a brief review of lite rature on learning in the organizational and interorganizational context which locates our stance on organizational learning versus the learning organization, and social, distributed versus technical, centred views of organizational learning and knowledge. Developing from the view that organizational learning is “a normal, if problematic, process in every organization” (Easterby-Smith, 1997: 1109), we introduce the notion of network learning: learning by a group of organizations as a group. We argue this is also a normal, if problematic, process in organizational relationships (as distinct from interorganizational learning), which has particular implications for network change. Part two of the paper develops our analysis, drawing on empirical data from two studies of learning. The first study addresses the issue of learning to collaborate between industrial customers and suppliers, leading to the case for network learning. The second, larger scale study goes on to develop this theme, examining learning around several major change issues in a healthcare service provider network. The learning processes and outcomes around the introduction of a particularly controversial and expensive technology are described, providing a rich and contrasting case with the first study. In part three, we then discuss the implications of this work for change, and for facilitating change. Conclusions from the first study identify potential interventions designed to facilitate individual and organizational learning within the customer organization to develop individual and organizational ‘capacity to collaborate’. Translated to the network example, we observe that network change entails learning at all levels – network, organization, group and individual. However, presenting findings in terms of interventions is less meaningful in an interorganizational network setting given: the differences in authority structures; the less formalised nature of the network setting; and the importance of evaluating performance at the network rather than organizational level. Academics challenge both the idea of managing change and of managing networks. Nevertheless practitioners are faced with the issue of understanding and in fluencing change in the network setting. Thus we conclude that a network learning perspective is an important development in our understanding of organizational learning, capability and change, locating this in the wider context in which organizations are embedded. This in turn helps to develop our appreciation of facilitating change in interorganizational networks, both in terms of change issues (such as introducing a new technology), and change orientation and capability.
Resumo:
This paper looks at potential distribution network stability problems under the Smart Grid scenario. This is to consider distributed energy resources (DERs) e.g. renewable power generations and intelligent loads with power-electronic controlled converters. The background of this topic is introduced and potential problems are defined from conventional power system stability and power electronic system stability theories. Challenges are identified with possible solutions from steady-state limits, small-signal, and large-signal stability indexes and criteria. Parallel computation techniques might be included for simulation or simplification approaches are required for a largescale distribution network analysis.
Resumo:
This paper examines the extent to which both network structure and spatial factors impact on the organizational performance of universities as measured by the generation of industrial research income. Drawing on data concerning the interactions of universities in the UK with large research and development (R&D)-intensive firms, the paper employs both social network analysis and regression analysis. It is found that the structural position of a university within networks with large R&D-intensive firms is significantly associated with the level of research income gained from industry. Spatial factors, on the other hand, are not found to be clearly associated with performance, suggesting that universities operate on a level playing field across regional environments once other factors are controlled for.
Resumo:
The Internet has become a universal communication network tool. It has evolved from a platform that supports best-effort traffic to one that now carries different traffic types including those involving continuous media with quality of service (QoS) requirements. As more services are delivered over the Internet, we face increasing risk to their availability given that malicious attacks on those Internet services continue to increase. Several networks have witnessed denial of service (DoS) and distributed denial of service (DDoS) attacks over the past few years which have disrupted QoS of network services, thereby violating the Service Level Agreement (SLA) between the client and the Internet Service Provider (ISP). Hence DoS or DDoS attacks are major threats to network QoS. In this paper we survey techniques and solutions that have been deployed to thwart DoS and DDoS attacks and we evaluate them in terms of their impact on network QoS for Internet services. We also present vulnerabilities that can be exploited for QoS protocols and also affect QoS if exploited. In addition, we also highlight challenges that still need to be addressed to achieve end-to-end QoS with recently proposed DoS/DDoS solutions. © 2010 John Wiley & Sons, Ltd.
Resumo:
The aim of this paper is to propose a conceptual framework for studying the knowledge transfer problem within the supply chain. The social network analysis (SNA) is presented as a useful tool to study knowledge networks within supply chain, to visualize knowledge flows and to identify the accumulating knowledge nodes of the networks. © 2011 IEEE.