36 resultados para Industrial engineering
em Aston University Research Archive
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
Risks and uncertainties are part and parcel of any project as projects are planned with many assumptions. Therefore, managing those risks is the key to project success. Although risk is present in all most all projects, large-scale construction projects are most vulnerable. Risk is by nature subjective. However, managing risk subjectively posses the danger of non-achievement of project goals. This study introduces an analytical framework for managing risk in projects. All the risk factors are identified, their effects are analyzed, and alternative responses are derived with cost implication for mitigating the identified risks. A decision-making framework is then formulated using decision tree. The expected monetary values are derived for each alternative. The responses, which require least cost is selected. The entire methodology has been explained through a case study of an oil pipeline project in India and its effectiveness in managing projects has been demonstrated. © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING.
Resumo:
Data Envelopment Analysis (DEA) is one of the most widely used methods in the measurement of the efficiency and productivity of Decision Making Units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper proposes a neural network back-propagation Data Envelopment Analysis to address this problem for the very large scale datasets now emerging in practice. Neural network requirements for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of large datasets. Finally, the back-propagation DEA algorithm is applied to five large datasets and compared with the results obtained by conventional DEA.
Resumo:
This paper contributes to extend the minimax disparity to determine the ordered weighted averaging (OWA) model based on linear programming. It introduces the minimax disparity approach between any distinct pairs of the weights and uses the duality of linear programming to prove the feasibility of the extended OWA operator weights model. The paper finishes with an open problem. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
In the last two decades there have been substantial developments in the mathematical theory of inverse optimization problems, and their applications have expanded greatly. In parallel, time series analysis and forecasting have become increasingly important in various fields of research such as data mining, economics, business, engineering, medicine, politics, and many others. Despite the large uses of linear programming in forecasting models there is no a single application of inverse optimization reported in the forecasting literature when the time series data is available. Thus the goal of this paper is to introduce inverse optimization into forecasting field, and to provide a streamlined approach to time series analysis and forecasting using inverse linear programming. An application has been used to demonstrate the use of inverse forecasting developed in this study. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper introduces a new mathematical method for improving the discrimination power of data envelopment analysis and to completely rank the efficient decision-making units (DMUs). Fuzzy concept is utilised. For this purpose, first all DMUs are evaluated with the CCR model. Thereafter, the resulted weights for each output are considered as fuzzy sets and are then converted to fuzzy numbers. The introduced model is a multi-objective linear model, endpoints of which are the highest and lowest of the weighted values. An added advantage of the model is its ability to handle the infeasibility situation sometimes faced by previously introduced models.
Resumo:
Purpose: This paper reviews current literature and contributes a set of findings that capture the current state-of-the-art of the topic of green production. Design/methodology/approach: A literature review to capture, classify and summarize the main body of knowledge on green production and, translate this into a form that is readily accessible to researchers and practitioners in the more mainstream operations management community. Findings: The existing knowledge base is somewhat fragmented. This is a relatively unexplored topic within mainstream operations management research and one which could provide rich opportunities for further exploration. Originality/value: This paper sets out to review current literature, from a more conventional production operations perspective, and contributes a set of findings that capture the current state-of-the-art of this topic.
Resumo:
Third-party logistics service providers (3PLs) play a vital role in contemporary supply chain management. Evaluation and selection of the right 3PLs depends on a wide range of quantitative and qualitative criteria rather than cost-based factors. Although various multi-criteria decision making approaches have been proposed, they have not considered the impact of business objectives and requirements of company stakeholders on the evaluating criteria. To enable the "voice" of company stakeholders is considered, this paper develops an integrated approach for selecting 3PL strategically. In the approach, multiple evaluating criteria are derived from the requirements of company stakeholders using a series of house of quality (HOQ). The importance of evaluating criteria is prioritized with respect to the degree of achieving the stakeholder requirements using analytic hierarchy process (AHP). Based on the ranked criteria, alternative 3PLs are evaluated and compared with each other using AHP again to make an optimal selection.