19 resultados para Inductive Electromagnetic

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The explicit expression for spatial-temporal Airy pulse is derived from the Maxwell's equations in paraxial approximation. The trajectory of the pulse in the time-space coordinates is analysed. The existence of a bifurcation point that separates regions with qualitatively different features of the pulse propagation is demonstrated. At this point the velocity of the pulse becomes infinite and the orientation of it changes to the opposite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a series of studies, I investigated the developmental changes in children’s inductive reasoning strategy, methodological manipulations affecting the trajectory, and driving mechanisms behind the development of category induction. I systematically controlled the nature of the stimuli used, and employed a triad paradigm in which perceptual cues were directly pitted against category membership, to explore under which circumstances children used perceptual or category induction. My induction tasks were designed for children aged 3-9 years old using biologically plausible novel items. In Study 1, I tested 264 children. Using a wide age range allowed me to systematically investigate the developmental trajectory of induction. I also created two degrees of perceptual distractor – high and low – and explored whether the degree of perceptual similarity between target and test items altered children’s strategy preference. A further 52 children were tested in Study 2, to examine whether children showing a perceptual-bias were in fact basing their choice on maturation categories. A gradual transition was observed from perceptual to category induction. However, this transition could not be due to the inability to inhibit high perceptual distractors as children of all ages were equally distracted. Children were also not basing their strategy choices on maturation categories. In Study 3, I investigated category structure (featural vs. relational category rules) and domain (natural vs. artefact) on inductive preference. I tested 403 children. Each child was assigned to either the featural or relational condition, and completed both a natural kind and an artefact task. A further 98 children were tested in Study 4, on the effect of using stimuli labels during the tasks. I observed the same gradual transition from perceptual to category induction preference in Studies 3 and 4. This pattern was stable across domains, but children developed a category-bias one year later for relational categories, arguably due to the greater demands on executive function (EF) posed by these stimuli. Children who received labels during the task made significantly more category choices than those who did not receive labels, possibly due to priming effects. Having investigated influences affecting the developmental trajectory, I continued by exploring the driving mechanism behind the development of category induction. In Study 5, I tested 60 children on a battery of EF tasks as well as my induction task. None of the EF tasks were able to predict inductive variance, therefore EF development is unlikely to be the driving factor behind the transition. Finally in Study 6, I divided 252 children into either a comparison group or an intervention group. The intervention group took part in an interactive educational session at Twycross Zoo about animal adaptations. Both groups took part in four induction tasks, two before and two a week after the zoo visits. There was a significant increase in the number of category choices made in the intervention condition after the zoo visit, a result not observed in the comparison condition. This highlights the role of knowledge in supporting the transition from perceptual to category induction. I suggest that EF development may support induction development, but the driving mechanism behind the transition is an accumulation of knowledge, and an appreciation for the importance of category membership.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50-100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of the thesis compares Roth's method with other methods, in particular the method of separation of variables and the finite cosine transform method, for solving certain elliptic partial differential equations arising in practice. In particular we consider the solution of steady state problems associated with insulated conductors in rectangular slots. Roth's method has two main disadvantages namely the slow rate of con­vergence of the double Fourier series and the restrictive form of the allowable boundary conditions. A combined Roth-separation of variables method is derived to remove the restrictions on the form of the boundary conditions and various Chebyshev approximations are used to try to improve the rate of convergence of the series. All the techniques are then applied to the Neumann problem arising from balanced rectangular windings in a transformer window. Roth's method is then extended to deal with problems other than those resulting from static fields. First we consider a rectangular insulated conductor in a rectangular slot when the current is varying sinusoidally with time. An approximate method is also developed and compared with the exact method.The approximation is then used to consider the problem of an insulated conductor in a slot facing an air gap. We also consider the exact method applied to the determination of the eddy-current loss produced in an isolated rectangular conductor by a transverse magnetic field varying sinusoidally with time. The results obtained using Roth's method are critically compared with those obtained by other authors using different methods. The final part of the thesis investigates further the application of Chebyshdev methods to the solution of elliptic partial differential equations; an area where Chebyshev approximations have rarely been used. A poisson equation with a polynomial term is treated first followed by a slot problem in cylindrical geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods of solving the neuro-electromagnetic inverse problem are examined and developed, with specific reference to the human visual cortex. The anatomy, physiology and function of the human visual system are first reviewed. Mechanisms by which the visual cortex gives rise to external electric and magnetic fields are then discussed, and the forward problem is described mathematically for the case of an isotropic, piecewise homogeneous volume conductor, and then for an anisotropic, concentric, spherical volume conductor. Methods of solving the inverse problem are reviewed, before a new technique is presented. This technique combines prior anatomical information gained from stereotaxic studies, with a probabilistic distributed-source algorithm to yield accurate, realistic inverse solutions. The solution accuracy is enhanced by using both visual evoked electric and magnetic responses simultaneously. The numerical algorithm is then modified to perform equivalent current dipole fitting and minimum norm estimation, and these three techniques are implemented on a transputer array for fast computation. Due to the linear nature of the techniques, they can be executed on up to 22 transputers with close to linear speedup. The latter part of the thesis describes the application of the inverse methods to the analysis of visual evoked electric and magnetic responses. The CIIm peak of the pattern onset evoked magnetic response is deduced to be a product of current flowing away from the surface areas 17, 18 and 19, while the pattern reversal P100m response originates in the same areas, but from oppositely directed current. Cortical retinotopy is examined using sectorial stimuli, the CI and CIm ;peaks of the pattern onset electric and magnetic responses are found to originate from areas V1 and V2 simultaneously, and they therefore do not conform to a simple cruciform model of primary visual cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology is presented which can be used to produce the level of electromagnetic interference, in the form of conducted and radiated emissions, from variable speed drives, the drive that was modelled being a Eurotherm 583 drive. The conducted emissions are predicted using an accurate circuit model of the drive and its associated equipment. The circuit model was constructed from a number of different areas, these being: the power electronics of the drive, the line impedance stabilising network used during the experimental work to measure the conducted emissions, a model of an induction motor assuming near zero load, an accurate model of the shielded cable which connected the drive to the motor, and finally the parasitic capacitances that were present in the drive modelled. The conducted emissions were predicted with an error of +/-6dB over the frequency range 150kHz to 16MHz, which compares well with the limits set in the standards which specify a frequency range of 150kHz to 30MHz. The conducted emissions model was also used to predict the current and voltage sources which were used to predict the radiated emissions from the drive. Two methods for the prediction of the radiated emissions from the drive were investigated, the first being two-dimensional finite element analysis and the second three-dimensional transmission line matrix modelling. The finite element model took account of the features of the drive that were considered to produce the majority of the radiation, these features being the switching of the IGBT's in the inverter, the shielded cable which connected the drive to the motor as well as some of the cables that were present in the drive.The model also took account of the structure of the test rig used to measure the radiated emissions. It was found that the majority of the radiation produced came from the shielded cable and the common mode currents that were flowing in the shield, and that it was feasible to model the radiation from the drive by only modelling the shielded cable. The radiated emissions were correctly predicted in the frequency range 30MHz to 200MHz with an error of +10dB/-6dB. The transmission line matrix method modelled the shielded cable which connected the drive to the motor and also took account of the architecture of the test rig. Only limited simulations were performed using the transmission line matrix model as it was found to be a very slow method and not an ideal solution to the problem. However the limited results obtained were comparable, to within 5%, to the results obtained using the finite element model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation investigates the very important and current problem of modelling human expertise. This is an apparent issue in any computer system emulating human decision making. It is prominent in Clinical Decision Support Systems (CDSS) due to the complexity of the induction process and the vast number of parameters in most cases. Other issues such as human error and missing or incomplete data present further challenges. In this thesis, the Galatean Risk Screening Tool (GRiST) is used as an example of modelling clinical expertise and parameter elicitation. The tool is a mental health clinical record management system with a top layer of decision support capabilities. It is currently being deployed by several NHS mental health trusts across the UK. The aim of the research is to investigate the problem of parameter elicitation by inducing them from real clinical data rather than from the human experts who provided the decision model. The induced parameters provide an insight into both the data relationships and how experts make decisions themselves. The outcomes help further understand human decision making and, in particular, help GRiST provide more accurate emulations of risk judgements. Although the algorithms and methods presented in this dissertation are applied to GRiST, they can be adopted for other human knowledge engineering domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major challenge of MEG, the inverse problem, is to estimate the very weak primary neuronal currents from the measurements of extracranial magnetic fields. The non-uniqueness of this inverse solution is compounded by the fact that MEG signals contain large environmental and physiological noise that further complicates the problem. In this paper, we evaluate the effectiveness of magnetic noise cancellation by synthetic gradiometers and the beamformer analysis method of synthetic aperture magnetometry (SAM) for source localisation in the presence of large stimulus-generated noise. We demonstrate that activation of primary somatosensory cortex can be accurately identified using SAM despite the presence of significant stimulus-related magnetic interference. This interference was generated by a contact heat evoked potential stimulator (CHEPS), recently developed for thermal pain research, but which to date has not been used in a MEG environment. We also show that in a reduced shielding environment the use of higher order synthetic gradiometry is sufficient to obtain signal-to-noise ratios (SNRs) that allow for accurate localisation of cortical sensory function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis presents a theoretical and practical study of the dynamic behaviour of electromagnetic relays. After discussing the problem of solving the dynamicc equations analytically and presenting a historical survey of the earlier works in the relay and its dynamics, the simulation of a relay on the analogue computer is discussed. It is shown that the simulation may be used to obtain specific solutions to the dynamic equations. The computer analysis provides the dynamic characteristics for design purposes and may be used in the study of bouncing, rebound oscillations and stability of the armature motion. An approximate analytical solution to the two dynamic equations is given based on the assumption that the dynamic variation of the pull with the position of the armature is linear. The assumption is supported by the Computer-aided analysis and experimental results. The solution is intended to provide a basis for a rational design. A rigorous method of analysing the dynamic performance by using Ahlberg's theory is also presented. This method may be justified to be the extension of Ahlberg's theory by taking the mass and frictional damping forces into account. While calculating the armature motion mathematically, Ahlberg considers the equilibrium of two kinds of forces, namely pull and load, and disregards the mass and friction forces, whereas the present method deals with the equilibrium of all four kinds of forces. It is shown how this can be utilised to calculate the dynamic characteristics for a specific design. The utility of this method also extends to the study of stability, contact bounce and armature rebound. The magnetic circuit and other related topics which are essential to the study of relay dynamics are discussed and some necessary experimental results are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory processing is a crucial underpinning of the development of social cognition, a function which is compromised in variable degree in patients with pervasive developmental disorders (PDD). In this manuscript, we review some of the most recent and relevant contributions, which have looked at auditory sensory processing derangement in PDD. The variability in the clinical characteristics of the samples studied so far, in terms of severity of the associated cognitive deficits and associated limited compliance, underlying aetiology and demographic features makes a univocal interpretation arduous. We hypothesise that, in patients with severe mental deficits, the presence of impaired auditory sensory memory as expressed by the mismatch negativity could be a non-specific indicator of more diffuse cortical deficits rather than causally related to the clinical symptomatology. More consistent findings seem to emerge from studies on less severely impaired patients, in whom increased pitch perception has been interpreted as an indicator of increased local processing, probably as compensatory mechanism for the lack of global processing (central coherence). This latter hypothesis seems extremely attractive and future trials in larger cohorts of patients, possibly standardising the characteristics of the stimuli are a much-needed development. Finally, specificity of the role of the auditory derangement as opposed to other sensory channels needs to be assessed more systematically using multimodal stimuli in the same patient group. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inductive reasoning is fundamental to human cognition, yet it remains unclear how we develop this ability and what might influence our inductive choices. We created novel categories in which crucial factors such as domain and category structure were manipulated orthogonally. We trained 403 4-9-year-old children to categorise well-matched natural kind and artefact stimuli with either featural or relational category structure, followed by induction tasks. This wide age range allowed for the first full exploration of the developmental trajectory of inductive reasoning in both domains. We found a gradual transition from perceptual to categorical induction with age. This pattern was stable across domains, but interestingly, children showed a category bias one year later for relational categories. We hypothesise that the ability to use category information in inductive reasoning develops gradually, but is delayed when children need to process and apply more complex category structures. © 2014 © 2014 Taylor & Francis.