21 resultados para Induction Motor Control
em Aston University Research Archive
Resumo:
The primary objective of this paper is to elimination of the problem of sensitivity to parameter variation of induction motor drive. The proposed sensorless strategy is based on an algorithm permitting a better simultaneous estimation of the rotor speed and the stator resistance including an adaptive mechanism based on the lyaponov theory. To study the reliability and the robustness of the sensorless technique to abnormal operations, some simulation tests have been performed under several cases. The proposed sensorless vector control scheme showed a good performance behavior in the transient and steady states, with an excellent disturbance rejection of the load torque. © 2013 Praise Worthy Prize S.r.l. - All rights reserved.
Resumo:
The purpose of this thesis is twofold: to examine the validity of the rotating-field and cross-field theories of the single-phase induction motor when applied to a cage rotor machine; and to examine the extent to which skin effect is likely to modify the characteristics of a cage rotor machine. A mathematical analysis is presented for a single-phase induction motor in which the rotor parameters are modified by skin effect. Although this is based on the usual type of ideal machine, a new form of model rotor allows approximations for skin effect phenomena to be included as an integral part of the analysis. Performance equations appropriate to the rotating-field and cross-field theories are deduced, and the corresponding explanations for the steady-state mode of operation are critically examined. The evaluation of the winding currents and developed torque is simplified by the introduction of new dimensionless factors which are functions of the resistance/reactance ratios of the rotor and the speed. Tables of the factors are included for selected numerical values of the parameter ratios, and these are used to deduce typical operating characteristics for both cage and wound rotor machines. It is shown that a qualitative explanation of the mode of operation of a cage rotor machine is obtained from either theory; but the operating characteristics must be deduced from the performance equations of the rotating-field theory, because of the restrictions on the values of the rotor parameters imposed by skin effect.
Resumo:
A two degrees of freedom (2-DOF) actuator capable of producing linear translation, rotary motion, or helical motion would be a desirable asset to the fields of machine tools, robotics, and various apparatuses. In this paper, a novel 2-DOF split-stator induction motor was proposed and electromagnetic structure pa- rameters of the motor were designed and optimized. The feature of the direct-drive 2-DOF induction motor lies in its solid mover ar- rangement. In order to study the complex distribution of the eddy current field on the ferromagnetic cylinder mover and the motor’s operating characteristics, the mathematical model of the proposed motor was established, and characteristics of the motor were ana- lyzed by adopting the permeation depth method (PDM) and finite element method (FEM). The analytical and numerical results from motor simulation clearly show a correlation between the PDM and FEM models. This may be considered as a fair justification for the proposed machine and design tools.
Resumo:
The advent of the harmonic neutralised shunt Converter Compensator as a practical means of reactive power compensation in power transmission systems has cleared ground for wider application of this type of equipment. An experimental 24-pulse voltage sourced convector has been successfully applied in controlling the terminal power factor of a 1.5kW, 240V three phase cage rotor induction motor, whose winding has been used in place of the usual phase shifting transformers. To achieve this, modifications have been made to the conventional stator winding of the induction machine. These include an unconventional phase spread and facilitation of compensator connections to selected tapping points between stator coils to give a three phase winding with a twelve phase connection to the twenty four pulse converter. Theoretical and experimental assessments of the impact of these modifications and attachment of the compensator have shown that there is a slight reduction in the torque developed at a given slip and in the combined system efficiency. There is also an increase in the noise level, also a consequence of the harmonics. The stator leakage inductance gave inadequate coupling reactance between the converter and the effective voltage source, necessitating the use of external inductors in each of the twelve phases. The terminal power factor is fully controllable when the induction machine is used either as a motor or as a generator.
Resumo:
The research carried out in this thesis was mainly concerned with the effects of large induction motors and their transient performance in power systems. Computer packages using the three phase co-ordinate frame of reference were developed to simulate the induction motor transient performance. A technique using matrix algebra was developed to allow extension of the three phase co-ordinate method to analyse asymmetrical and symmetrical faults on both sides of the three phase delta-star transformer which is usually required when connecting large induction motors to the supply system. System simulation, applying these two techniques, was used to study the transient stability of a power system. The response of a typical system, loaded with a group of large induction motors, two three-phase delta-star transformers, a synchronous generator and an infinite system was analysed. The computer software developed to study this system has the advantage that different types of fault at different locations can be studied by simple changes in input data. The research also involved investigating the possibility of using different integrating routines such as Runge-Kutta-Gill, RungeKutta-Fehlberg and the Predictor-Corrector methods. The investigation enables the reduction of computation time, which is necessary when solving the induction motor equations expressed in terms of the three phase variables. The outcome of this investigation was utilised in analysing an introductory model (containing only minimal control action) of an isolated system having a significant induction motor load compared to the size of the generator energising the system.
Resumo:
A methodology is presented which can be used to produce the level of electromagnetic interference, in the form of conducted and radiated emissions, from variable speed drives, the drive that was modelled being a Eurotherm 583 drive. The conducted emissions are predicted using an accurate circuit model of the drive and its associated equipment. The circuit model was constructed from a number of different areas, these being: the power electronics of the drive, the line impedance stabilising network used during the experimental work to measure the conducted emissions, a model of an induction motor assuming near zero load, an accurate model of the shielded cable which connected the drive to the motor, and finally the parasitic capacitances that were present in the drive modelled. The conducted emissions were predicted with an error of +/-6dB over the frequency range 150kHz to 16MHz, which compares well with the limits set in the standards which specify a frequency range of 150kHz to 30MHz. The conducted emissions model was also used to predict the current and voltage sources which were used to predict the radiated emissions from the drive. Two methods for the prediction of the radiated emissions from the drive were investigated, the first being two-dimensional finite element analysis and the second three-dimensional transmission line matrix modelling. The finite element model took account of the features of the drive that were considered to produce the majority of the radiation, these features being the switching of the IGBT's in the inverter, the shielded cable which connected the drive to the motor as well as some of the cables that were present in the drive.The model also took account of the structure of the test rig used to measure the radiated emissions. It was found that the majority of the radiation produced came from the shielded cable and the common mode currents that were flowing in the shield, and that it was feasible to model the radiation from the drive by only modelling the shielded cable. The radiated emissions were correctly predicted in the frequency range 30MHz to 200MHz with an error of +10dB/-6dB. The transmission line matrix method modelled the shielded cable which connected the drive to the motor and also took account of the architecture of the test rig. Only limited simulations were performed using the transmission line matrix model as it was found to be a very slow method and not an ideal solution to the problem. However the limited results obtained were comparable, to within 5%, to the results obtained using the finite element model.
Resumo:
Direct-drive linear reciprocating compressors offer numerous advantages over conventional counterparts which are usually driven by a rotary induction motor via crank shaft However, to ensure efficient and reliable operation under all conditions, it is essential that the motor current of the linear compressor follows a sinusoidal command profile with a frequency which matches the system resonant frequency. This paper describes a hybrid current controller for the linear compressors. It comprises a conventional proportional-integral (PI) controller, and a B-spline neural network compensator which is trained on-line and in real-time in order to minimize the current tracking error under all conditions with uncertain disturbances. It has been shown that the hybrid current controller has a superior steady-state and transient performance over the conventional carrier based PI controller. The performance of the proposed hybrid controller has been demonstrated by extensive simulations and experiments. It has also been shown that the linear compressor operates stably under the current feedback control and the piston stroke can be adjusted by varying the amplitude of the current command. © 2007 IEEE.
Resumo:
Impaired postural control has been associated with poor reading skills, as well as with lower performance on measures of attention and motor control variables that frequently co-occur with reading difficulties. Measures of balance and motor control have been incorporated into several screening batteries for developmental dyslexia, but it is unclear whether the relationship between such skills and reading manifests as a behavioural continuum across the range of abilities or is restricted to groups of individuals with specific disorder phenotypes. Here were obtained measures of postural control alongside measures of reading, attention and general cognitive skills in a large sample of young adults (n = 100). Postural control was assessed using centre of pressure (CoP) measurements, obtained over 5 different task conditions. Our results indicate an absence of strong statistical relationships between balance measures with either reading, cognitive or attention measures across the sample as a whole. © 2014 Loras et al.
Resumo:
Objectives - Impaired attentional control and behavioral control are implicated in adult suicidal behavior. Little is known about the functional integrity of neural circuitry supporting these processes in suicidal behavior in adolescence. Method - Functional magnetic resonance imaging was used in 15 adolescent suicide attempters with a history of major depressive disorder (ATTs), 15 adolescents with a history of depressive disorder but no suicide attempt (NATs), and 14 healthy controls (HCs) during the performance of a well-validated go-no-go response inhibition and motor control task that measures attentional and behavioral control and has been shown to activate prefrontal, anterior cingulate, and parietal cortical circuitries. Questionnaires assessed symptoms and standardized interviews characterized suicide attempts. Results - A 3 group by 2 condition (go-no-go response inhibition versus go motor control blocks) block-design whole-brain analysis (p < .05, corrected) showed that NATs showed greater activity than ATTs in the right anterior cingulate gyrus (p = .008), and that NATs, but not ATTs, showed significantly greater activity than HCs in the left insula (p = .004) to go-no-go response inhibition blocks. Conclusions - Although ATTs did not show differential patterns of neural activity from HCs during the go-no-go response inhibition blocks, ATTs and NATs showed differential activation of the right anterior cingulate gyrus during response inhibition. These findings indicate that suicide attempts during adolescence are not associated with abnormal activity in response inhibition neural circuitry. The differential patterns of activity in response inhibition neural circuitry in ATTs and NATs, however, suggest different neural mechanisms for suicide attempt versus major depressive disorder in general in adolescence that should be a focus of further study.
Resumo:
The globus pallidus, together with the striatum (caudate nucleus and putamen), substantia nigra, nucleus accumbens, and subthalamic nucleus constitute the basal ganglia, a group of nuclei which act as a single functional unit. The basal ganglia have extensive connections to the cerebral cortex and thalamus and exert control over a variety of functions including voluntary motor control, procedural learning, and motivation. The action of the globus pallidus is primarily inhibitory and balances the excitatory influence of other areas of the brain such as the cerebral cortex and cerebellum. Neuropathological changes affecting the basal ganglia play a significant role in the clinical signs and symptoms observed in the ‘parkinsonian syndromes’ viz., Parkinson’s disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD). There is increasing evidence that different regions of the basal ganglia are differentially affected in these disorders. Hence, in all parkinsonian disorders and especially PD, there is significant pathology affecting the substantia nigra and its dopamine projection to the striatum. However, in PSP and MSA, the globus pallidus is also frequently affected while in DLB and CBD, whereas the caudate nucleus and/or putamen are affected, the globus pallidus is often spared. This chapter reviews the functional pathways of the basal ganglia, with special reference to the globus pallidus, and the role that differential pathology in these regions may play in the movement disorders characteristic of the parkinsonian syndromes.
Resumo:
Direct-drive linear reciprocating compressors offer numerous advantages over conventional counterparts which are usually driven by a rotary induction motor via a crank shaft. However, to ensure efficient and reliable operation under all conditions, it is essential that motor current of a linear compressor follows a sinusoidal current command with a frequency which matches the system resonant frequency. The design of a high-performance current controller for linear compressor drive presents a challenge since the system is highly nonlinear, and an effective solution must be low cost. In this paper, a learning feed-forward current controller for the linear compressors is proposed. It comprises a conventional feedback proportional-integral controller and a feed-forward B-spline neural network (BSNN). The feed-forward BSNN is trained online and in real time in order to minimize the current tracking error. Extensive simulation and experiment results with a prototype linear compressor show that the proposed current controller exhibits high steady state and transient performance. © 2009 IEEE.
Resumo:
The ageing process can interfere considerably with the use of mobile devices, e.g. due to changes in vision, attention, and motor control. Designing mobile technology with older adults poses its own challenges. In the absence of a complete methodology for working with older users, researchers and designers are often left to improvise their own methods. This can result in co-design relationships being compromised and weak design insights emerging. How can we best adapt or modify existing methods for working with this group?
Resumo:
The representation of serial position in sequences is an important topic in a variety of cognitive areas including the domains of language, memory, and motor control. In the neuropsychological literature, serial position data have often been normalized across different lengths, and an improved procedure for this has recently been reported by Machtynger and Shallice (2009). Effects of length and a U-shaped normalized serial position curve have been criteria for identifying working memory deficits. We present simulations and analyses to illustrate some of the issues that arise when relating serial position data to specific theories. We show that critical distinctions are often difficult to make based on normalized data. We suggest that curves for different lengths are best presented in their raw form and that binomial regression can be used to answer specific questions about the effects of length, position, and linear or nonlinear shape that are critical to making theoretical distinctions. © 2010 Psychology Press.