15 resultados para Increased Growth-rate
em Aston University Research Archive
Resumo:
The association between lobe connections and the degree of lobe crowding and radial growth was studied in thalli of the foliose lichen Xanthoparmelia conspersa. In 35 thalli, 15% of the lobes were not physically connected to either of their neighbours before the lobes merged into the centre of the thallus. Twenty-five percent of the lobes were connected in pairs and 29% in groups of three. Approximately 5% of the lobes were interconnected in larger groups of six or more. The mean number of lobes per group in a thallus was positively correlated with thallus diameter and with the degree of lobe growth variation but was unrelated to annual radial growth rate (RGR). The degree of crowding of the lobes in a thallus was defined as a 'crowding index', viz., the product of lobe density and mean lobe width. Crowding index increased rapidly with size in smaller thalli but changed less with size in larger thalli. Crowding index was positively correlated with RGR but was unrelated to lobe growth variation. Lobes removed from large thalli and glued in various configurations to simulate different degrees of crowding did not demonstrate an association between lobe crowding and RGR over one year. These results suggest that the pattern of lobe connectivity of a thallus is associated with lobe growth variation in X. conspersa. The degree of lobe crowding is associated with the increase in RGR with thallus size in smaller thalli and by restricting lobe width, could also be a factor associated with the more constant growth of larger thalli.
Resumo:
The pattern of seasonal growth and the relation of growth rate to colony size were studied in four foliose and two crustose species of saxicolous lichens. A new method of measuring growth was used whereby the advance of a sample of lobes along millimetres marked on the substrate was measured under a magnification of x10. Three peaks of growth were found(in March, June and November) for the foliose species and a single peak (in May to August) for the crustose species. THe peaks of growth corresponded approximately to peaks of rainfall. Growth rate in relation to increasing colony size fell in a smooth exponential curve when expressed on a cm squared/ cm squared/ unit time basis. The result is consistent with a linear radial rate for most of the thallus sizes for the six species. There is also evidence for an exponential incresae in growth rate initially until about 1.5 cm thallus diameter in two of the sepcies when the linear radial rate is achieved.
Resumo:
Changes in the radial growth rate (RGR mm/yr) through life were studied in thalli of the foliose lichen Parmelia conspersa by two methods: (1) a cross-sectional study (Study A) in which the RGR was measured in 60 thalli from 0.2 to 13 cm in diameter, and (2) by radial growth measurements over 4.5 years of fragments, consisting of a single major lobe, which were removed from large thalli and glued to pieces of slate (Study B). Both studies suggested there was a phase of increasing RGR in small thalli followed by a more constant phase, the latter beginning at approximately a thallus radius of 6-8 mm. However, in Study B significantly increased RGR was observed during the second 6-month growth period. This phase of growth was more likely to be due to an increase in lobe width than to an effect of climate. In addition, a lobe in a large thallus with both adjacent lobes removed significantly increased in width over 1 year compared with control lobes. These results suggest that (1) mean lobe width in a thallus may be determined by the intensity of marginal competition between adjacent lobes, and (2) changes in lobe width during the life of a lichen thallus may be a factor determining the establishment of the linear phase of growth in foliose lichens. © 1992.
Resumo:
Data on the growth curve of the lichen Rhizocarpon geographicum were obtained by measuring the radial growth rates (mm per 1.5 years) of 39 thalli from 2 to 65 mm in diameter growing in the same environment. An Aplin and Hill plot (r2 – r1 against ln r2 – ln r1) of the data and regression analyses suggested an initial phase of growth (up to a diameter of about 7 mm) in which the relative growth rate increased rapidly. This was followed by a phase in which the relative growth rate fell but the radial growth rate continued to rise (7 to 20 mm in diameter). Radial growth was then relatively constant until about 45 mm diameter and then declined. The Aplin and Hill model did not fit the data as a whole but may apply for a transient period in thalli between about 7 and 16 mm in diameter. The curve shows some similarities to that suggested by lichenometric studies but differs in showing a less steep decline in growth rate after the ‘great’ period.
Resumo:
Three lichen species were wetted with distilled water at different frequencies during August 1973 to July 1974. The radial growth rates of Parmelia glabratula ssp. fuliginosa and Physcia orbicularis thalli declined with increased wetting while the radial growth rate of Parmelia conspersa thalli increased with wetting frequency until ten experimental wettings per month but at fifteen wettings per month fell to a value near to the control. In the summer months, wetting resulted in a decline in the radial growth of P. glabratula ssp fuliginosa compared with the control but had little influence on the growth of P. conspersa and Physcia orbicularis. In the winter months, wetting had no significant influence on the radial growth of Parmelia glabratula ssp. fuliginosa, while the radial growth of P. conspersa increased and Physcia orbicularis declined compared with controls. These results are interpreted physiologically and in relation to the aspect distribution of the three lichens on rock surfaces.
Resumo:
Crustose species are the slowest growing of all lichens. Their slow growth and longevity, especially of the yellow-green Rhizocarpon group, has made them important for surface-exposure dating (‘lichenometry’). This review considers various aspects of the growth of crustose lichens revealed by direct measurement including: 1) early growth and development, 2) radial growth rates (RGR, mm yr-1), 3) the growth rate-size curve, and 4) the influence of environmental factors. Many crustose species comprise discrete areolae that contain the algal partner growing on the surface of a non-lichenised fungal hypothallus. Recent data suggest that ‘primary’ areolae may develop from free-living algal cells on the substratum while ‘secondary’ areolae develop from zoospores produced within the thallus. In more extreme environments, the RGR of crustose species may be exceptionally slow but considerably faster rates of growth have been recorded under more favourable conditions. The growth curves of crustose lichens with a marginal hypothallus may differ from the ‘asymptotic’ type of curve recorded in foliose and placodioid species and the latter are characterized by a phase of increasing RGR to a maximum and may be followed by a phase of decreasing growth. The decline in RGR in larger thalli may be attributable to a reduction in the efficiency of translocation of carbohydrate to the thallus margin or to an increased allocation of carbon to support mature ‘reproductive’ areolae. Crustose species have a low RGR accompanied by a low demand for nutrients and an increased allocation of carbon for stress resistance; therefore enabling colonization of more extreme environments.
Resumo:
Nuisance growths of Cladophora have been associated with eutrophication. A review of the literature, however, reveals a scarcity of relevant experimental growth studies. Sampling experimental streams reveals that the addition of sewage effluent to good quality water alters the flora from that dominated by Potamogetan crispus to one dominated by CLadophora. Spatial and temporal differences in biomass of taxa present are discussed in the context of accompanying physicochemical data. In laboratory batch culture, growth of unialgal C. glomerata was accompanied by elevation of medium pH - considered largely responsible for the poor growth in such culture. However, appropriate experimental conditions and indices of growth were selected and the effects of various herbicides assessed. Diquat and terbutryne were shown to possess algicidal activity towards Cladophora. A closed continuous culture apparatus was developed: growth proceeded through lag, logarithmic and linear phases. Inoculum size and medium flow rate had significant effects on growth, and were standardized. In continuous culture, specific growth rate increased linearly with increased duration of light per day, up to 24 hours, and increased light intensity, up to 6000 lux - the highest intensity tested. Comparison of field and laboratory results suggests that ammonia toxicity is attributable to the undissociated form. In the laboratory, 185 µg/1 undissociated ammoniacal nitrogen reduced specific growth rate to 50% of that at 10 µg/1 undissociated ammcniacal nitrogen. 0.077-1.057 mg/1 NO2-N had no significant effect on growth. 7.2-15.2 mg/1 NO3-N had no significant effect on specific growth rate. Neither was any nitrate/phosphate interaction significant. At 4.9 mg/1 PO4-1, specific growth rate was only 48% of that at 1.9 g/1 P04-P. The critical medium PO4-P concentration was <0.1 mg/i. Specific growth rate was reduced to 50% of that in natural water by 0.036 mgCu/l, 0.070 mgzn/1 and 1.03 mgPb/l. Metal uptake was evaluated.
Resumo:
The development of in vitro techniques to model the surface-associated mode of growth is a prerequisite to understanding more fully the physiological changes involved in such a growth strategy. Key factors believed to influence bacterial persistence in chronic infections are those of the biofilm mode of growth and slow growth rate. Methods for controlling Pseudomonas aeruginosa biofilm population growth rates were investigated in this project. This microorganism was incompatible with the in vitro 47mm diameter membrane filter-based biofilm technique developed for the study of Escherichia coli and Staphylococcus epidermidis by Gilbert et al (Appl. Environ. Microbiol. 1989, 55, 1308-1311). Two alternative methods were designed. The first comprised a 25mm diameter cellulose acetate membrane filter supported in an integral holder. This was found to be limited to the study of low microbial population densities with low flow rates. The second, based on a cylindrical cellulose fibre depth filter, permitted rapid flow rates to be studied and allowed growth rate control of biofilm and eluted cells. Model biofilms released cells to the perfusing medium as they grew and divided. The viability of released cells was reduced during, and shortly after, inclusion of ciprofloxacin in the perfusate. Outer membrane profiles of biofilm populations exhibited at least two bands not apparent in planktonic cells grown in batch and chemostat culture, and LPS profiles of biofilm populations showed variation with growth rate. Cell surface hydrophobicity of resuspended biofilm cells varied little with growth rate, whilst it decreased markedly for cells released from the biofilms as growth rate increased. Cells released from the biofilm were more hydrophilic than their sessile counterparts. Differing growth rates, LPS profiles and hydrophobicity are proposed to have a bearing on the release of cells from the adherent population.
Resumo:
In this work, we investigate the impact of minute amounts of pure nitrogen addition into conventional methane/hydrogen mixtures on the growth characteristics of nanocrystalline diamond (NCD) films by microwave plasma assisted chemical vapour deposition (MPCVD), under high power conditions. The NCD films were produced from a gas mixture of 4% CH4/H2 with two different concentrations of N2 additive and microwave power ranging from 3.0 kW to 4.0 kW, while keeping all the other operating parameters constant. The morphology, grain size, microstructure and texture of the resulting NCD films were characterized by using scanning electron microscope (SEM), micro-Raman spectroscopy and X-ray diffraction (XRD) techniques. N2 addition was found to be the main parameter responsible for the formation and for the key change in the growth characteristics of NCD films under the employed conditions. Growth rates ranging from 5.4 μm/h up to 9.6 μm/h were achieved for the NCD films, much higher than those usually reported in the literature. The enhancing factor of nitrogen addition on NCD growth rate was obtained by comparing with the growth rate of large-grained microcrystalline diamond films grown without nitrogen and discussed by comparing with that of single crystal diamond through theoretical work in the literature. This achievement on NCD growth rate makes the technology interesting for industrial applications where fast coating of large substrates is highly desirable.
Resumo:
A study of the influence of SiC-particulate reinforcement on ageing and subsequent fatigue crack growth resistance in a powder metallurgy 8090 aluminium alloy-SiC composite has been made. Macroscopic hardness measurements revealed that ageing at 170°C in the composite is accelerated with respect to the unreinforced alloy, though TEM studies indicate that this is not due to the enhanced precipitation of S′. Fatigue crack growth rates in the naturally aged condition of the composite and unreinforced matrix are similar at low to medium values of ΔK, but diverge above ≈ 8 MPa√m owing to the lower fracture toughness of the composite. As a result of the presence of the reinforcement, planar slip in the composite is suppressed and facetted crack growth is not observed. Ageing at or above 170°C has a deleterious effect on fatigue crack growth. Increased ageing time decreases the roughness of the fracture path at higher growth rates. These effect are though to be due to microstructural changes occurring at or near to the SiC/matrix interfaces, providing sites for static mode failure mechanisms to operate. This suggestion is supported by the observation that as ΔK increases, crack growth rates become Kmax dependent, implying the crack growth rate is strongly influenced by static modes.
Resumo:
Threshold stress intensity values, ranging from ∼6 to 16 MN m −3/2 can be obtained in powder-formed Nimonic AP1 by changing the microstructure. The threshold and low crack growth rate behaviour at room temperature of a number of widely differing API microstructures, with both ‘necklace’ and fully recrystallized grain structures of various sizes and uniform and bimodal γ′-distributions, have been investigated. The results indicate that grain size is an important microstructural parameter which can control threshold behaviour, with the value of threshold stress intensity increasing with increasing grain size, but that the γ′-distribution is also important. In this Ni-base alloy, as in many others, near threshold fatigue crack growth occurs in a crystallographic manner along {111} planes. This is due to the development of a dislocation structure involving persistent slip bands on {111} planes in the plastic zone, caused by the presence of ordered shearable precipitates in the microstructure. However, as the stress intensity range is increased, a striated growth mode takes over. The results presented show that this transition from faceted to striated growth is associated with a sudden increase in crack propagation rate and occurs when the size of the reverse plastic zone at the crack tip becomes equal to the grain size, independent of any other microstructural variables.
Resumo:
Background— Fetal growth restriction (FGR) affects 5% to 10% of newborns and is associated with increased cardiovascular mortality in adulthood. The most commonly accepted hypothesis is that fetal metabolic programming leads secondarily to diseases associated with cardiovascular disease, such as obesity, diabetes mellitus, and hypertension. Our main objective was to evaluate the alternative hypothesis that FGR induces primary cardiac changes that persist into childhood. Methods and Results— Within a cohort of fetuses with growth restriction identified in fetal life and followed up into childhood, we randomly selected 80 subjects with FGR and compared them with 120 normally grown fetuses, matched for gender, birth date, and gestational age at birth. Cardiovascular assessment was performed in childhood (mean age of 5 years). Compared with control subjects, children with FGR had a different cardiac shape, with increased transversal diameters and more globular cardiac ventricles. Although left ejection fraction was similar among the study groups, stroke volume was reduced significantly, which was compensated for by an increased heart rate to maintain output in severe FGR. This was associated with subclinical longitudinal systolic dysfunction (decreased myocardial peak velocities) and diastolic changes (increased E/E' ratio and E deceleration time). Children with FGR also had higher blood pressure and increased intima-media thickness. For all parameters evaluated, there was a linear increase with the severity of growth restriction. Conclusions— These findings suggest that FGR induces primary cardiac and vascular changes that could explain the increased predisposition to cardiovascular disease in adult life. If these results are confirmed, the impact of strategies with beneficial effects on cardiac remodeling should be explored in children with FGR.
Resumo:
In this work, we report high growth rate of nanocrystalline diamond (NCD) films on silicon wafers of 2 inches in diameter using a new growth regime, which employs high power and CH4/H2/N2/O2 plasma using a 5 kW MPCVD system. This is distinct from the commonly used hydrogen-poor Ar/CH4 chemistries for NCD growth. Upon rising microwave power from 2000 W to 3200 W, the growth rate of the NCD films increases from 0.3 to 3.4 μm/h, namely one order of magnitude enhancement on the growth rate was achieved at high microwave power. The morphology, grain size, microstructure, orientation or texture, and crystalline quality of the NCD samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and micro-Raman spectroscopy. The combined effect of nitrogen addition, microwave power, and temperature on NCD growth is discussed from the point view of gas phase chemistry and surface reactions. © 2011 Elsevier B.V. All rights reserved.