6 resultados para Inconsumable Anode

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly of cobalt coordination frameworks (Co-CPs) with a two-dimensional morphology is demonstrated by a solvothermal method. The morphology of the Co-CPs has been controlled by various solvothermal conditions. The two-dimensional nanostructures agglomerated by Co3O4 nanoparticles remained after the pyrolysis of the Co-CPs. The as-synthesized Co3O4 anode material is characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge measurements. The morphology of Co3O4 plays a crucial role in the high performance anode materials for lithium batteries. The Co3O4 nanoparticles with opened-book morphology deliver a high capacity of 597 mA h g-1 after 50 cycles at a current rate of 800 mA g-1. The opened-book morphology of Co3O4 provides efficient lithium ion diffusion tunnels and increases the electrolyte/Co3O4 contact/interfacial area. At a relatively high current rate of 1200 mA g-1, Co3O4 with opened-book morphology delivers an excellent rate capability of 574 mA h g-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of factors relating to various methods of repair for chloride initiated corrosion damage of reinforced concrete have been studied. A novel methodology has been developed to facilitate the measurement of macro and micro-cell corrosion rates for steel electrodes embedded in mortar prisms containing a chloride gradient. The galvanic bar specimen comprised electrically isolatable segmental mild steel electrodes and was constructed such that macro-cell corrosion currents were determinable for a number of electrode combinations. From this, the conditions giving rise to an incipient anode were established. The influence of several reinforcement and substrate primer systems upon macro-cell corrosion, arising from an incipient anode, within a patch repair have been investigated. Measurements of electrochemical noise were made in order to investigate the suitability of the technique as an on-site means of assessing corrosion activity within chloride contaminated reinforced concrete. For this purpose the standard deviation of potential noise was compared to macro-cell galvanic current data and micro-cell corrosion intensity determined by linear polarisation. Hydroxyl ion pore solution analyses were carried out on mortar taken from cathodically protected specimens. These specimens, containing sodium chloride, were cathodically protected over a range of polarisation potentials. Measurement of the hydroxyl ion concentrations were made in order to examine the possibility of alkali-silica reactions initiated by cathodic protection of reinfored concrete. A range of mortars containing a variety of generic type additives were examined in order to establish their resistances to chloride ion diffusion. The effect of surfactant addition rate was investigated within a cement paste containing various dosages of naphthalene sulphonate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature and kinetics of electrode reactions and processes occurring for four lightweight anode systems which have been utilised in reinforced concrete cathodic protection systems have been studied. The anodes investigated were flame sprayed zinc, conductive paint and two activated titanium meshes. The electrochemical properties of each material were investigated in rapidly stirred de-oxygenated electrolytes using anodic potentiodynamic polarisation. Conductive coating electrodes were formed on glass microscope slides, whilst mesh strands were immersed directly. Oxygen evolution occurred preferentially for both mesh anodes in saturated Ca (OH)2/CaC12 solutions but was severely inhibited in less alkaline solutions and significant current only passed in chloride solutions. The main reactions for conductive paint was based on oxygen evolution in all electrolytes, although chlorides increased the electrical activity. Self-corrosion of zinc was controlled by electrolyte composition and the experimental set-up, chlorides increasing the electrical activity. Impressed current cathodic protection was applied to 25 externally exposed concrete slabs over a period of 18 months to investigate anode degradation mechanisms at normal and high current densities. Specimen chloride content, curing and reinforcement depth were also variables. Several destructive and non-destructive methods for assessing the performance of anodes were evaluated including a site instrument for quantitative "instant-off- potential measurements. The impact of cathodic protection on the concrete substrate was determined for a number of specimens using appropriate methods. Anodic degradation rates were primarily influenced by current density, followed by cemendtious alkalinity, chloride levels and by current distribution. Degradation of cementitious overlays and conductive paint substrates proceeded by sequential neutralisation of cement phases, with some evidence of paint binder oxidation. Sprayed zinc progressively formed an insulating layer of hydroxide complexes, which underwent pitting_ attack in the presence of sufficient chlorides, whilst substrate degradation was minimal. Adhesion of all anode systems decreased with increasing current density. The influence of anode material on the ionic gradients which can develop during cathodic protection was investigated. A constant current was passed through saturated cement paste prisms containing calcium chloride to central cathodes via anodes applied or embedded at each end. Pore solution was obtained from successive cut paste slices for anion and cation analyses. Various experimental errors reduced the value of the results. Characteristic S-shaped profiles were not observed and chloride ion profiles were ambiguous. Mesh anode specimens were significantly more durable than the conductive coatings in the high humidity environment. Limited results suggested zinc ion migration to the cathode region. Electrical data from each investigation clearly indicated a decreasing order of anode efficiency by specific anode material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infection is a major clinical problem associated with the use of intravenous catheters.The efficacy of a direct electric current (10µA, 9V) via electrode-conducting carbon impregnated catheters to prevent colonisation of catheters by micro-organisms was investigated. The range of organisms susceptible to 10µA was determined by a zone of inhibition test. The catheters acting as the anode and the cathode were inserted into a nutrient agar plate inoculated with a lawn of bacteria. There was no zone of inhibition observed around the anode. Organisms susceptible to 10µA at the cathode were Staphylococcus aureus (2 strains), Staphylococcus epidermidis (5 strains), Escherichia coli and Klebsiella pneumoniae (2 strains each), and one strain of the following micro-organisms: Staphylococcus hominis, Proteus mirabilis, Pseudomonas aeruginosa and Candida albicans. The zones ranged from 6 to 16 mm in diameter according to the organisms under test. The zone size was proportional to the amperage (10 - 100 µA) and the number of organisms on the plate. Ten µA did not prevent adhesion of staphylococci to the cathode nor did it affect their growth in nutrient broth. However, it was bactericidal to adherent bacteria on the cathodal catheter and significantly reduced the number of bacteria on the catheter after 4 to 24 h application of electricity. The antimicrobial activity of low amperage electric current under anaerobic conditions and in the absence of chloride ions against bacteria attached to the surface of a current carrying electrode was also investigated.The mechanisms of the bactericidal activity associated with the cathode were investigated with S. epidermidis and S. aureus. The inhibition zone was greatly reduced in the presence of catalase. There was no zone around the cathode when the test was carried out under anaerobic conditions. Hydrogen peroxide was produced at the cathode surface under aerobic conditions, but not in the absence of oxygen. A salt-bridge apparatus was used to demonstrate further that hydrogen peroxide was produced at the cathode, and chlorine at the anode. The antimicrobial activity of low amperage electric current under anaerobic conditions and in the absence of chloride ions against bacteria attached to the surface of a current carrying electrode was also investigated. Antibacterial activity was reduced under anaerobic conditions, which is compatible with the role of hydrogen peroxide as a primary bactericidal agent of electricity associated with the cathode. A reduction in chloride ions did not significantly reduce the antibacterial activity suggesting chlorine plays only a minor role in the bactericidal activity against organisms attached to anodal electrode surfaces. The bactericidal activity of electric current associated with the cathode and H202 was greatly reduced in the presence of 50 μM to 0.5 mM magnesium ions in the test menstrum. Ten μA applied via the catheters did not prevent the initial biofilm growth by the adherent bacteria but reduced the number of bacteria in the biofilm by 2 log order aiter 24 h. The results suggested that 10 μA may prevent the colonisation of catheters by both the extra~ and intra-luminal routes. The localised production of hydrogen peroxide and chlorine and the intrinsic activity due to electric current may offer a useful method for the eradication of bacteria from catheter surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800°C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated. Lithium insertion properties were evaluated by galvanostatic and potentiostatic modes in half-cell configurations. By combining the large surface area, open mesoporosity and stable crystalline phase, the porous-shaped anatase TiO2 exhibited the highest capacity, best rate and cycling performance among the four samples. The present results demonstrated the usefulness of three-dimensional TiO 2 as an anode for lithium storage with improved electrode performance. © 2013 The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous tin films as anode for lithium-ion batteries are electrodeposited on graphite paper. Homogeneous tin films with significant void space accommodate the volume change during tin lithiation/delithiation. Through adjusting the electrodeposition currents and time, the morphologies and void space of tin films on graphite paper are controllable. At fixed electrodeposition current densities, the prolonged electrodeposition time plays the role in growing big tin particles and resulting the disappearance of void space among tin particles. The increased electrodeposition current plays the role to increase the quantity of tin seeds in thickness of tin film, and the void space among tin particles remains but the thick film limits its electrochemical performance. The tin films electrodeposited at an optimized current densities and for an optimized electrodeposition time, present the best electrochemical performance, because the tin nanoparticles are well dispersed on graphite substrate including void space. The tin film electrodeposited at 0.2 A cm-2 for 2 min shows the capacity of 1.0 mAh cm-2 after 50 charge/discharge cycles. The void space of tin film is very important for the best capacity and cyclic ability. The metallic tin film produced at 0.4 A cm-2 for 3 min remains the uniform and microporous structure after charge/discharge for 50 cycles.