2 resultados para Inclusion complexes
em Aston University Research Archive
Resumo:
Objective The aim of this study was to investigate Pluronic F127-modified liposome-containing cyclodextrin (CD) inclusion complex (FLIC) for improving the solubility, cellular uptake and intestinal penetration of tacrolimus (FK 506) in the gastrointestinal (GI) tract. Methods Molecular modelling was performed to screen the optimal CD for the solubilization of FK 506. FLIC was prepared by thin-lipid film hydration with the inclusion complex solutions followed by membrane extrusion. Dilution tests were conducted in simulated gastric fluids and phosphate-buffered solution of sodium taurocholate to investigate the solubility improvement of FK506. The cellular uptake of nanocarriers was studied in Caco-2 cells, and intestinal mucous membrane penetration in the GI tract was evaluated in Sprague-Dawley rats. Key findings The results showed that β-CD had the strongest binding energy with the guest molecule among the CDs. The prepared FLIC has an average diameter of 180.8 ± 8.1 nm with a spherical shape. The solubility and cellular uptake of FK 506 was greatly improved by the incorporation of CD complexes in the Pluronic F127-modified liposomes. Intestinal mucous membrane penetration was also significantly improved by the preparation of FLIC. Conclusion With improved drug solubility and intestinal mucous membrane penetration, FLIC shows a promising oral delivery system for FK 506. © 2013 Royal Pharmaceutical Society.
Resumo:
Poorly water-soluble drugs show an increase in solubility in the presence of cyclodextrins (CyD) due to the formation of a water-soluble complex between the drug and dissolved CyD. This study investigated the interactions of -Cyd and hydroxypropyl--CyD (HP--CyD, M.S. = 0.6) with antimicrobial agents of limited solubility in an attempt to increase their microbiological efficacy. The agents studied were chlorhexidine dihydrochloride (CHX), p-hydroxybenzoic acid esters (methyl, ethyl, proply and butyl) and triclosan. The interactions between the antimicrobials and CyDs were studied in solution and solid phases. Phase solubility studied revealed an enhancement in the aqueous drug solubility in the presence of the CyD and also gave an indication of the complex stability constant (Ks). The temperature-dependence of the stability constant of the complex was modelled by the van't Hoff plot which yielded the thermodynamic parameters for complexation. Further confirmation of the inclusion of the antimicrobials within the cavity of the CyDs in aqueous solution was obtained from proton magnetic resonance and ultraviolet absorption spectroscopies. The former method indicated that the chlorophenyl moiety of the CHX was included within the -CyD cavity and the stoichiometry of the complex formed was 1:1. The solid-phase complexes were prepared by freeze-drying. The inclusion complex of triclosan with HP--CyD was obtained from aqueous solution with the addition of ammonia. Evidence to confirm complex formation was obtained from DSC, IR and X-ray powder diffraction studies. Dissolution studies of the solid inclusion complexes using the dispersed powder technique illustrated their superior solubilities as compared to the equimolar physical mix of the guest and CyD. It was shown that these solutions of the complex were supersaturated with respect to the free guest. This was further demonstrated by diffusion studies which showed the flux of free drug from donor solutions of the antimicrobial-CyD complex to be significantly greater than the flux from donor suspensions of drug alone.