23 resultados para Inclusion Hyperspace
em Aston University Research Archive
Resumo:
The laminar distribution of the neurofilament inclusions (NI) and swollen achromatic neurons (SN) was studied in gyri of the temporal cortex in four patients with neurofilament inclusion disease (NID). In 84% of gyri analysed, the density of the NI was maximal in the lower cortical laminae. The distribution of the SN was more variable than the NI. Density was maximal in the lower cortex in 46% of gyri, in the upper cortical laminae in 8% of gyri, and a bimodal distribution in 15% of gyri. In the remaining gyri, there was a more even distribution of SN with cortical depth. In 31% of gyri, the vertical density of the NI was positively correlated with that of the SN. The data suggest that cortical degeneration in the temporal lobe of NID initially affects neurons in the lower laminae. Subsequently, the pathology may spread to affect much of the cortical profile, the SN preceding the appearance of the NI.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID) is characterized by α-internexin positive neuronal cytoplasmic inclusions (NCI), swollen achromatic neurons (SN), neuronal loss, and gliosis. This study tested: 1) whether the spatial patterns of the lesions was topographically organized in areas of the frontal and temporal lobe and 2) whether a spatial relationship exists between the NCI and SN. The NCI were distributed in regular clusters and in a quarter of these areas, the clusters were 400-800 μm in diameter approximating to the size of the cells of origin of the cortico-cortical pathways. Variations in the density of the NCI were positively correlated with the SN. Hence, cortical degeneration in NIFID appears to be topographically organized and may affect the cortico-cortical projections, the clusters of NCI and SN developing within the same vertical columns of cells. © 2007 Springer-Verlag.
Resumo:
Objective: To determine the laminar distribution of the pathological changes in the frontal and temporal lobe in neuronal intermediate filament inclusion disease (NIFID). Method: The distribution of the alpha-intenexin-positive neuronal cytoplasmic inclusions (NCI), surviving neurons, swollen achromatic neurons (SN) and glial cell nuclei was studied across the cortex in gyri of the frontal and temporal lobe in 10 cases of NIFID. Results: The distribution of the NCI was highly variable within different gyri, a peak in the upper cortex, a bimodal distribution with peaks of density in the upper and lower laminae, or no significant variation in density across the cortex. The surviving neurons were either bimodally distributed or exhibited no significant change in density across the cortex. The SN and glial cell nuclei were most abundant in the lower cortical laminae. In half of the gyri, variations in density of the NCI across the cortex were positively correlated with the SN. In some gyri, the surviving neurons were positively correlated with the SN and negatively correlated with the glial cell nuclei. In addition, the SN and glial cell nuclei were positively correlated in over half the gyri studied. Conclusion: The data suggest that frontal and temporal lobe degeneration in NIFID characterized by NCI, SN, neuronal loss and gliosis extends across the cortical laminae with considerable variation between cases and gyri. alpha-internexin-positive neurons in the upper laminae appear to be particularly vulnerable. The gliosis appears to be largely correlated with the appearance of SN and with neuronal loss and not related to the NCI.
Resumo:
Ten cases of neuronal intermediate filament inclusion disease (NIFID) were studied quantitatively. The α-internexin positive neurofilament inclusions (NI) were most abundant in the motor cortex and CA sectors of the hippocampus. The densities of the NI and the swollen achromatic neurons (SN) were similar in laminae II/III and V/VI but glial cell density was greater in V/VI. The density of the NI was positively correlated with the SN and the glial cells. Principal components analysis (PCA) suggested that PC1 was associated with variation in neuronal loss in the frontal/temporal lobes and PC2 with neuronal loss in the frontal lobe and NI density in the parahippocampal gyrus. The data suggest: 1) frontal and temporal lobe degeneration in NIFID is associated with the widespread formation of NI and SN, 2) NI and SN affect cortical laminae II/III and V/VI, 3) the NI and SN affect closely related neuronal populations, and 4) variations in neuronal loss and in the density of NI were the most important sources of pathological heterogeneity. © Springer-Verlag 2005.
Resumo:
Abnormal neuronal intermediate filament (IF) inclusions immunopositive for the type IV IF α-internexin have been identified as the pathological hallmark of neuronal intermediate filament inclusion disease (NIFID). We studied the topography of these inclusions in the frontal and temporal lobe in 68 areas from 10 cases of NIFID. In the cerebral cortex, CA sectors of the hippocampus, and dentate gyrus granule cell layer, the inclusions were distributed mainly in regularly distributed clusters, 50-800 μm in diameter. In seven cortical areas, there was a more complex pattern in which the clusters of inclusions were aggregated into larger superclusters. In 11 cortical areas, the size of the clusters approximated to those of the cells of origin of the cortico-cortical pathways but in the majority of the remaining areas, cluster size was smaller than 400 μm. The topography of the lesions suggests that there is degeneration of the cortico-cortical projections in NIFID with the formation of α-internexin-positive aggregates within vertical columns of cells. Initially, only a subset of cells within a vertical column develops inclusions but as the disease progresses, the whole of the column becomes affected. The corticostriate projection appears to have little effect on the cortical topography of the inclusions. © 2006 EFNS.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID) is a new neurodegenerative disease characterized histologically by the presence of neuronal cytoplasmic inclusions (NI) immunopositive for intermediate filament proteins, neuronal loss, swollen achromatic neurons (SN), and gliosis. We studied the spatial patterns of these pathological changes parallel to the pia mater in gyri of the temporal lobe in four cases of NIFID. Both the NI and SN occurred in clusters that were regularly distributed parallel to the pia mater, the cluster sizes of the SN being significantly greater than those of the NI. In a significant proportion of areas studied, there was a spatial correlation between the clusters of NI and those of the SN and with the density of the surviving neurons. In addition, the clusters of surviving neurons were negatively correlated (out of phase) with the clusters of glial cell nuclei. The pattern of clustering of these histological features suggests that there is degeneration of the cortico-cortical projections in NIFID leading to the formation of NI and SN within the same vertical columns of cells. The glial cell reaction may be a response to the loss of neurons rather than to the appearance of the NI or SN.
Resumo:
Neuronal intermediate filament (IF) inclusion disease (NIFID) is characterized by neuronal loss, neuronal cytoplasmic IF-positive inclusions (NI), swollen neurons (SN), and a glial cell reaction. We studied the spatial correlations between the clusters of NI, SN, and glial cells in four gyri of the temporal lobe (superior temporal gyrus, inferior temporal gyrus, lateral occipitotemporal gyrus, and parahippocampal gyrus) in four cases of NIFID. The densities of histological features (per 50x250 μ sample field) were as follows: NI (mean = 0.41, range 0.28-0.68), SN (mean = 1.41, range 0.47-2.65), glial cell nuclei (mean = 5.21, range 3.63-8.17). The NI and the SN were positively correlated in half of the brain regions examined, the correlations being present at the smallest field size (50x250 μm). The NI were also positively or negatively correlated with the glial cell nuclei in different areas, the negative correlations being present at the smallest field size. Glial cell nuclei were positively or negatively correlated with the SN in different brain areas, mainly at the larger field sizes (400x250 and 800x250 μm). The spatial correlation between the clusters of NI and SN in the cortex suggests their development within the same columns of cells. At first, the glial cell reaction is also confined to these columns but later becomes more generally distributed across the cortex. © Springer-Verlag 2004.
Resumo:
Objective: To quantify the densities of neurofilament inclusions (NI), swollen achromatic neurons, surviving neurons and glial cells in a novel neurofilamentopathy neurofilament inclusion disease (NID). Material: Sectionsof temporal lobe from 4 cases of NID stained with an antibody raised to neurofilament proteins. Method: Densities of the pathological changes were estimated in the various gyri of the temporal lobe, hippocampus and dentate gyrus. Results: Densities of the NI and swollen achromatic neurons (SN) were greater in the cerebral cortical gyri than in the hippocampus and dentate gyrus. Lesion density was relatively constant between gyri and between the CA sectors of the hippocampus. In cortical gyri, the density of the NI, SN and glial cell nuclei was greater in laminae II/III than laminae V/VI. Densities of the NI were negatively correlated with the surviving neurons and positively correlated with the glial cell nuclei. The density of the SN was positively correlated with that of the surviving neurons. Conclusion: The pathology of NID morphologically resembles that of Pick's disease (PD) and corticobasal degeneration (CBD), but there are distinct differences between NID and these disorders supporting the hypothesis that NID is a novel and unique type of neurodegenerative disease.
Resumo:
Neurofilament inclusion disease (NID) is a novel neurodegenerative disease characterized histologically by the presence of neurofilament positive neuronal inclusions (NI) and swollen achromatic neurons (SN). The density and distribution of NI and SN were studied in areas of the temporal lobe in four cases of NID. In NID, the density of the NI and SN was greater in areas of the cerebral cortex compared with the hippocampus and dentate gyrus. Lesion densities were similar in the different gyri of the temporal cortex and in the various cornu ammonis sectors of the hippocampus. In the cerebral cortex, the density of the NI and SN was greater in the lower compared with the upper cortical laminae. There was no significant correlation between the densities of the NI and SN. The distribution of the temporal lobe pathology of NID has several differences from that reported in Pick's disease and corticobasal degeneration supporting the hypothesis that NID is a novel and unique type of neurodegenerative disease. © 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Five linepipe type steels were produced in order to study the effect of calcium and magnesium injection on their final properties. Two of these steels were at the extremes of the sulphide range i.e. 0.003 and 0.017% sulphur with no injection attempted; thereby, providing standards to compare with the injected steels. The oxygen level varied from 21 to 63 p.p.m. The cast ingots were controlled-rolled and isothermally rolled in order to study the deformation characteristics of the residual non-metallic inclusions. The structure and cleanliness of these steels was evaluated metallographically using the light microscope, SEM, and image analysis and the results related to their Charpy toughness and HIC resistance. Increasing sulphur levels decreased final properties of the steel. In the untreated state, with as little as 0.003% sulphur, test orientation was highly influential. Modification of sulphur bearing steels was achieved with low modifying element to sulphur ratios provided that the oxygen content was very low. Injection of calcium into steel caused interaction with oxide and sulphide inclusions which was biased toward oxide reduction relative to sulphur removal. Magnesium again reduced oxides and appeared to be linked with aluminia containing inclusions in the final product. It produced improved toughness values relative to a similar sulphur containing calcium treated steel. The results of this work could be extended to establish the mechanism of inclusion modification with magnesium additions to sulphur bearing steels.
Resumo:
Objective: Qualitative research is increasingly valued as part of the evidence for policy and practice, but how it should be appraised is contested. Various appraisal methods, including checklists and other structured approaches, have been proposed but rarely evaluated. We aimed to compare three methods for appraising qualitative research papers that were candidates for inclusion in a systematic review of evidence on support for breast-feeding. Method: A sample of 12 research papers on support for breast-feeding was appraised by six qualitative reviewers using three appraisal methods: unprompted judgement, based on expert opinion; a UK Cabinet Office quality framework; and CASP, a Critical Appraisal Skills Programme tool. Papers were assigned, following appraisals, to 1 of 5 categories, which were dichotomized to indicate whether or not papers should be included in a systematic review. Patterns of agreement in categorization of papers were assessed quantitatively using κ statistics, and qualitatively using cross-case analysis. Results: Agreement in categorizing papers across the three methods was slight (κ =0.13; 95% CI 0.06-0.24). Structured approaches did not appear to yield higher agreement than that by unprompted judgement. Qualitative analysis revealed reviewers' dilemmas in deciding between the potential impact of findings and the quality of the research execution or reporting practice. Structured instruments appeared to make reviewers more explicit about the reasons for their judgements. Conclusions: Structured approaches may not produce greater consistency of judgements about whether to include qualitative papers in a systematic review. Future research should address how appraisals of qualitative research should be incorporated in systematic reviews. © The Royal Society of Medicine Press Ltd 2007.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of familial amyotrophic lateral sclerosis with FUS mutation, NIFID, basophilic inclusion body disease, and atypical FTLD with ubiquitin-immunoreactive inclusions (aFTLD-U). To further characterize FUS proteinopathy in NIFID, and to determine whether the pathology revealed by FUS immunohistochemistry (IHC) is more extensive than a-internexin, we have undertaken a quantitative assessment of ten clinically and neuropathologically well-characterized cases using FUS IHC. The densities of NCI were greatest in the dentate gyrus (DG) and in sectors CA1/2 of the hippocampus. Anti-FUS antibodies also labeled glial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN). Vacuolation was extensive across upper and lower cortical layers. Significantly greater densities of abnormally enlarged neurons and glial cell nuclei were present in the lower compared with the upper cortical laminae. FUS IHC revealed significantly greater numbers of NCI in all brain regions especially the DG. Our data suggest: (1) significant densities of FUS-immunoreactive NCI in NIFID especially in the DG and CA1/2; (2) infrequent FUS-immunoreactive GI, NII, and DN; (3) widely distributed vacuolation across the cortex, and (4) significantly more NCI revealed by FUS than a-internexin IHC.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament (IF) proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of NIFID. To further characterize FUS proteinopathy in NIFID, we studied the spatial patterns of the FUS-immunoreactive NCI in frontal and temporal cortex of 10 cases. In the cerebral cortex, sectors CA1/2 of the hippocampus, and the dentate gyrus (DG), the FUS-immunoreactive NCI were frequently clustered and the clusters were regularly distributed parallel to the tissue boundary. In a proportion of cortical gyri, cluster size of the NCI approximated to those of the columns of cells was associated with the cortico-cortical projections. There were no significant differences in the frequency of different types of spatial patterns with disease duration or disease stage. Clusters of NCI in the upper and lower cortex were significantly larger using FUS compared with phosphorylated, neurofilament heavy polypeptide (NEFH) or a-internexin (INA) immunohistochemistry (IHC). We concluded: (1) FUS-immunoreactive NCI exhibit similar spatial patterns to analogous inclusions in the tauopathies and synucleinopathies, (2) clusters of FUS-immunoreactive NCI are larger than those revealed by NEFH or ???, and (3) the spatial patterns of the FUS-immunoreactive NCI suggest the degeneration of the cortico-cortical projections in NIFID.
Resumo:
Using the resistance literature as an underpinning theoretical framework, this chapter analyzes how Web designers through their daily practices, (i) adopt recursive, adaptive, and resisting behavior regarding the inclusion of social cues online and (ii) shape the socio-technical power relationship between designers and other stakeholders. Five vignettes in the form of case studies with expert individual Web designers are used. Findings point out at three types of emerging resistance namely: market driven resistance, ideological resistance, and functional resistance. In addition, a series of propositions are provided linking the various themes. Furthermore, the authors suggest that stratification in Web designers’ type is occurring and that resistance offers a novel lens to analyze the debate.