17 resultados para Impala, Hadoop, Big Data, HDFS, Social Business Intelligence, SBI, cloudera
em Aston University Research Archive
Resumo:
The purpose of this research is to propose a procurement system across other disciplines and retrieved information with relevant parties so as to have a better co-ordination between supply and demand sides. This paper demonstrates how to analyze the data with an agent-based procurement system (APS) to re-engineer and improve the existing procurement process. The intelligence agents take the responsibility of searching the potential suppliers, negotiation with the short-listed suppliers and evaluating the performance of suppliers based on the selection criteria with mathematical model. Manufacturing firms and trading companies spend more than half of their sales dollar in the purchase of raw material and components. Efficient data collection with high accuracy is one of the key success factors to generate quality procurement which is to purchasing right material at right quality from right suppliers. In general, the enterprises spend a significant amount of resources on data collection and storage, but too little on facilitating data analysis and sharing. To validate the feasibility of the approach, a case study on a manufacturing small and medium-sized enterprise (SME) has been conducted. APS supports the data and information analyzing technique to facilitate the decision making such that the agent can enhance the negotiation and suppler evaluation efficiency by saving time and cost.
Resumo:
At the moment, the phrases “big data” and “analytics” are often being used as if they were magic incantations that will solve all an organization’s problems at a stroke. The reality is that data on its own, even with the application of analytics, will not solve any problems. The resources that analytics and big data can consume represent a significant strategic risk if applied ineffectively. Any analysis of data needs to be guided, and to lead to action. So while analytics may lead to knowledge and intelligence (in the military sense of that term), it also needs the input of knowledge and intelligence (in the human sense of that term). And somebody then has to do something new or different as a result of the new insights, or it won’t have been done to any purpose. Using an analytics example concerning accounts payable in the public sector in Canada, this paper reviews thinking from the domains of analytics, risk management and knowledge management, to show some of the pitfalls, and to present a holistic picture of how knowledge management might help tackle the challenges of big data and analytics.
Resumo:
In this paper we evaluate and compare two representativeand popular distributed processing engines for large scalebig data analytics, Spark and graph based engine GraphLab. Wedesign a benchmark suite including representative algorithmsand datasets to compare the performances of the computingengines, from performance aspects of running time, memory andCPU usage, network and I/O overhead. The benchmark suite istested on both local computer cluster and virtual machines oncloud. By varying the number of computers and memory weexamine the scalability of the computing engines with increasingcomputing resources (such as CPU and memory). We also runcross-evaluation of generic and graph based analytic algorithmsover graph processing and generic platforms to identify thepotential performance degradation if only one processing engineis available. It is observed that both computing engines showgood scalability with increase of computing resources. WhileGraphLab largely outperforms Spark for graph algorithms, ithas close running time performance as Spark for non-graphalgorithms. Additionally the running time with Spark for graphalgorithms over cloud virtual machines is observed to increaseby almost 100% compared to over local computer clusters.
Resumo:
Semantics, knowledge and Grids represent three spaces where people interact, understand, learn and create. Grids represent the advanced cyber-infrastructures and evolution. Big data influence the evolution of semantics, knowledge and Grids. Exploring semantics, knowledge and Grids on big data helps accelerate the shift of scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies.
Resumo:
Purpose – The purpose of this paper is to examine challenges and potential of big data in heterogeneous business networks and relate these to an implemented logistics solution. Design/methodology/approach – The paper establishes an overview of challenges and opportunities of current significance in the area of big data, specifically in the context of transparency and processes in heterogeneous enterprise networks. Within this context, the paper presents how existing components and purpose-driven research were combined for a solution implemented in a nationwide network for less-than-truckload consignments. Findings – Aside from providing an extended overview of today’s big data situation, the findings have shown that technical means and methods available today can comprise a feasible process transparency solution in a large heterogeneous network where legacy practices, reporting lags and incomplete data exist, yet processes are sensitive to inadequate policy changes. Practical implications – The means introduced in the paper were found to be of utility value in improving process efficiency, transparency and planning in logistics networks. The particular system design choices in the presented solution allow an incremental introduction or evolution of resource handling practices, incorporating existing fragmentary, unstructured or tacit knowledge of experienced personnel into the theoretically founded overall concept. Originality/value – The paper extends previous high-level view on the potential of big data, and presents new applied research and development results in a logistics application.
Resumo:
Relational demographers and dissimilarity researchers contend that group members who are dissimilar (vs. similar) to their peers in terms of a given diversity attribute (e.g. demographics, attitudes, values or traits) feel less attached to their work group, experience less satisfying and more conflicted relationships with their colleagues, and consequently are less effective. However, qualitative reviews suggest empirical findings tend to be weak and inconsistent (Chattopadhyay, Tluchowska and George, 2004; Riordan, 2000; Tsui and Gutek, 1999), and that it remains unclear when, how and to what extent such differences (i.e. relational diversity) affect group members social integration (i.e. attachment with their work group, satisfaction and conflicted relationships with their peers) and effectiveness (Riordan, 2000). This absence of meta-analytically derived effect size estimates and the lack of an integrative theoretical framework leave practitioners with inconclusive advice regarding whether the effects elicited by relational diversity are practically relevant, and if so how these should be managed. The current research develops an integrative theoretical framework, which it tests by using meta-analysis techniques and adding two further empirical studies to the literature. The first study reports a meta-analytic integration of the results of 129 tests of the relationship between relational diversity with social integration and individual effectiveness. Using meta-analytic and structural equation modelling techniques, it shows different effects of surface- and deep-level relational diversity on social integration Specifically, low levels of interdependence accentuated the negative effects of surface-level relational diversity on social integration, while high levels of interdependence accentuated the negative effects of deep-level relational diversity on social integration. The second study builds on a social self-regulation framework (Abrams, 1994) and suggests that under high levels of interdependence relational diversity is not one but two things: visibility and separation. Using ethnicity as a prominent example it was proposed that separation has a negative effect on group members effectiveness leading for those high in visibility and low in separation to overall positive additive effects, while to overall negative additive effects for those low in visibility and high in separation. These propositions were sustained in a sample of 621 business students working in 135 ethnically diverse work groups in a business simulation course over a period of 24 weeks. The third study suggests visibility has a positive effect on group members self-monitoring, while separation has a negative effect. The study proposed that high levels of visibility and low levels of separation lead to overall positive additive effects on self-monitoring but overall negative additive effects for those low in visibility and high in separation. Results from four waves of data on 261 business students working in 69 ethnically diverse work groups in a business simulation course held over a period of 24 weeks support these propositions.
Resumo:
In order to generate sales promotion response predictions, marketing analysts estimate demand models using either disaggregated (consumer-level) or aggregated (store-level) scanner data. Comparison of predictions from these demand models is complicated by the fact that models may accommodate different forms of consumer heterogeneity depending on the level of data aggregation. This study shows via simulation that demand models with various heterogeneity specifications do not produce more accurate sales response predictions than a homogeneous demand model applied to store-level data, with one major exception: a random coefficients model designed to capture within-store heterogeneity using store-level data produced significantly more accurate sales response predictions (as well as better fit) compared to other model specifications. An empirical application to the paper towel product category adds additional insights. This article has supplementary material online.
Resumo:
We analyze a Big Data set of geo-tagged tweets for a year (Oct. 2013–Oct. 2014) to understand the regional linguistic variation in the U.S. Prior work on regional linguistic variations usually took a long time to collect data and focused on either rural or urban areas. Geo-tagged Twitter data offers an unprecedented database with rich linguistic representation of fine spatiotemporal resolution and continuity. From the one-year Twitter corpus, we extract lexical characteristics for twitter users by summarizing the frequencies of a set of lexical alternations that each user has used. We spatially aggregate and smooth each lexical characteristic to derive county-based linguistic variables, from which orthogonal dimensions are extracted using the principal component analysis (PCA). Finally a regionalization method is used to discover hierarchical dialect regions using the PCA components. The regionalization results reveal interesting linguistic regional variations in the U.S. The discovered regions not only confirm past research findings in the literature but also provide new insights and a more detailed understanding of very recent linguistic patterns in the U.S.
Resumo:
Parkinson's disease is a complex heterogeneous disorder with urgent need for disease-modifying therapies. Progress in successful therapeutic approaches for PD will require an unprecedented level of collaboration. At a workshop hosted by Parkinson's UK and co-organized by Critical Path Institute's (C-Path) Coalition Against Major Diseases (CAMD) Consortiums, investigators from industry, academia, government and regulatory agencies agreed on the need for sharing of data to enable future success. Government agencies included EMA, FDA, NINDS/NIH and IMI (Innovative Medicines Initiative). Emerging discoveries in new biomarkers and genetic endophenotypes are contributing to our understanding of the underlying pathophysiology of PD. In parallel there is growing recognition that early intervention will be key for successful treatments aimed at disease modification. At present, there is a lack of a comprehensive understanding of disease progression and the many factors that contribute to disease progression heterogeneity. Novel therapeutic targets and trial designs that incorporate existing and new biomarkers to evaluate drug effects independently and in combination are required. The integration of robust clinical data sets is viewed as a powerful approach to hasten medical discovery and therapies, as is being realized across diverse disease conditions employing big data analytics for healthcare. The application of lessons learned from parallel efforts is critical to identify barriers and enable a viable path forward. A roadmap is presented for a regulatory, academic, industry and advocacy driven integrated initiative that aims to facilitate and streamline new drug trials and registrations in Parkinson's disease.
Resumo:
This paper researches on Matthew Effect in Sina Weibo microblogger. We choose the microblogs in the ranking list of Hot Microblog App in Sina Weibo microblogger as target of our study. The differences of repost number of microblogs in the ranking list between before and after the time when it enter the ranking list of Hot Microblog app are analyzed. And we compare the spread features of the microblogs in the ranking list with those hot microblogs not in the list and those ordinary microblogs of users who have some microblog in the ranking list before. Our study proves the existence of Matthew Effect in social network. © 2013 IEEE.
Resumo:
Text summarization has been studied for over a half century, but traditional methods process texts empirically and neglect the fundamental characteristics and principles of language use and understanding. Automatic summarization is a desirable technique for processing big data. This reference summarizes previous text summarization approaches in a multi-dimensional category space, introduces a multi-dimensional methodology for research and development, unveils the basic characteristics and principles of language use and understanding, investigates some fundamental mechanisms of summarization, studies dimensions on representations, and proposes a multi-dimensional evaluation mechanism. Investigation extends to incorporating pictures into summary and to the summarization of videos, graphs and pictures, and converges to a general summarization method. Further, some basic behaviors of summarization are studied in the complex cyber-physical-social space. Finally, a creative summarization mechanism is proposed as an effort toward the creative summarization of things, which is an open process of interactions among physical objects, data, people, and systems in cyber-physical-social space through a multi-dimensional lens of semantic computing. The insights can inspire research and development of many computing areas.
Resumo:
In the last two decades there have been substantial developments in the mathematical theory of inverse optimization problems, and their applications have expanded greatly. In parallel, time series analysis and forecasting have become increasingly important in various fields of research such as data mining, economics, business, engineering, medicine, politics, and many others. Despite the large uses of linear programming in forecasting models there is no a single application of inverse optimization reported in the forecasting literature when the time series data is available. Thus the goal of this paper is to introduce inverse optimization into forecasting field, and to provide a streamlined approach to time series analysis and forecasting using inverse linear programming. An application has been used to demonstrate the use of inverse forecasting developed in this study. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The authors propose a new approach to discourse analysis which is based on meta data from social networking behavior of learners who are submerged in a socially constructivist e-learning environment. It is shown that traditional data modeling techniques can be combined with social network analysis - an approach that promises to yield new insights into the largely uncharted domain of network-based discourse analysis. The chapter is treated as a non-technical introduction and is illustrated with real examples, visual representations, and empirical findings. Within the setting of a constructivist statistics course, the chapter provides an illustration of what network-based discourse analysis is about (mainly from a methodological point of view), how it is implemented in practice, and why it is relevant for researchers and educators.
Resumo:
GraphChi is the first reported disk-based graph engine that can handle billion-scale graphs on a single PC efficiently. GraphChi is able to execute several advanced data mining, graph mining and machine learning algorithms on very large graphs. With the novel technique of parallel sliding windows (PSW) to load subgraph from disk to memory for vertices and edges updating, it can achieve data processing performance close to and even better than those of mainstream distributed graph engines. GraphChi mentioned that its memory is not effectively utilized with large dataset, which leads to suboptimal computation performances. In this paper we are motivated by the concepts of 'pin ' from TurboGraph and 'ghost' from GraphLab to propose a new memory utilization mode for GraphChi, which is called Part-in-memory mode, to improve the GraphChi algorithm performance. The main idea is to pin a fixed part of data inside the memory during the whole computing process. Part-in-memory mode is successfully implemented with only about 40 additional lines of code to the original GraphChi engine. Extensive experiments are performed with large real datasets (including Twitter graph with 1.4 billion edges). The preliminary results show that Part-in-memory mode memory management approach effectively reduces the GraphChi running time by up to 60% in PageRank algorithm. Interestingly it is found that a larger portion of data pinned in memory does not always lead to better performance in the case that the whole dataset cannot be fitted in memory. There exists an optimal portion of data which should be kept in the memory to achieve the best computational performance.
Resumo:
Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging), or to look at large aggregations of decisions (i.e., big data). There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as “neuromarketing”. There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make “choices”, and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or “influenced”, which can occur at multiple “scales” of behavior (e.g., individual, group, or market/society). Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats.