5 resultados para Impaired Fasting Glucose
em Aston University Research Archive
Resumo:
Aim: To determine the impact of periodontitis on oxidative/inflammatory status and diabetes control in Type 2 diabetes. Materials and Methods: A comparative study of 20 Type 2 diabetes patients with periodontitis [body mass index (BMI) 31+5], 20-age/gender-matched, non-periodontitis Type 2 diabetes controls (BMI 29+6) and 20 non-diabetes periodontitis controls (BMI 25+4) had periodontal examinations and fasting blood samples collected. Oxidative stress was determined by plasma small molecule antioxidant capacity (pSMAC) and protein carbonyl levels; inflammatory status by total/differential leucocytes, fibrinogen and high sensitivity C-reactive protein (hsCRP); diabetes status by fasting glucose, HbA1c, lipid profile, insulin resistance and secretion. Statistical analysis was performed using SPSS. Results: pSMAC was lower (p=0.03) and protein carbonyls higher (p=0.007) in Type 2 diabetes patients with periodontitis compared with those without periodontitis. Periodontitis was associated with significantly higher HbA1c (p=0.002) and fasting glucose levels (p=0.04) and with lower ß-cell function (HOMA-ß; p=0.01) in diabetes patients. Periodontitis had little effect on inflammatory markers or lipid profiles, but Type 2 diabetes patients with periodontitis had higher levels of hsCRP than those without diabetes (p=0.004) and the lowest levels of HDL-cholesterol of all groups. Conclusion: Periodontitis is associated with increased oxidative stress and compromised glycaemic control in Type 2 diabetes patients.
Resumo:
To investigate the relationship between vascular function parameters measured at the retinal and systemic level and known markers for cardiovascular risk in patients with impaired glucose tolerance (IGT). Sixty age- and gender- matched White-European adults (30 IGT and 30 normal glucose tolerance -NGT) were recruited for the study. Fasting plasma glucose, lipids and 24-hour blood pressure (BP) was measured in all subjects. Systemic vascular and endothelial function was assessed using carotid-artery intimal media thickness (cIMT) and flow mediated dilation (FMD). Retinal vascular reactivity was assessed by the Dynamic Retinal Vessel Analyser (DVA). Additionally, blood glutathione (GSH, GSSG and tGSH) and plasma von-Willebrand (vWF) factor levels were also measured. Individuals with IGT demonstrated higher BP values (p<0.001), fasting TG and TG:HDL ratios (p<0.001) than NGT subjects. Furthermore, Total:HDL-C ratios and Framingham scores were raised (p=0.010 and p<0.001 respectively). Blood glutathione levels (GSH, GSSG and tGSH) were lower (p<0.001, p=0.039 and p<0.001 respectively) while plasma vWF was increased (p=0.014) in IGT subjects compared to controls. IGT individuals also demonstrated higher IMT in right and left carotid arteries (p=0.017 and p=0.005, respectively) alongside larger brachial artery diameter (p=0.015), lower FMD% (p=0.026) and GTN induced dilation (GID) (p=0.012) than healthy controls. At the retinal arterial level, the IGT subjects showed higher baseline fluctuations (BDF) (p=0.026), longer reaction time (RT) (p=0.032) and reduced baseline-corrected flicker response (bFR) (p=0.045). In IGT subjects retinal BDF correlated with and Total:HDL (p= 0.003) and HDL-C (p= 0.004). Arterial RT also correlated with FMD (p=0.017) in IGT but not NGT subjects. In IGT individuals there is a relationship between macro- and microvascular function, as well as a direct correlation between the observed retinal microcirculatory changes and established plasma markers for CVD. Multifactorial preventive interventions to decrease vascular risk in these individuals should be considered.
Resumo:
Mesenchymal stem cells (MSCs) represent a promising cell population for cell therapy and regenerative medicine applications. However, how variations in glucose are perceived by MSC pool is still unclear. Since, glucose metabolism is cell type and tissue dependent, this must be considered when MSCs are derived from alternative sources such as the heart. The zinc finger transcription factor Egr-1 is an important early response gene, likely to play a key role in the glucose-induced response. Our aim was to investigate how short-term changes in in vitro glucose concentrations affect multipotent cardiac tissue-derived MSCs (cMSCs) in a mouse model of Egr-1 KO (Egr-1-/-). Results showed that loss of Egr-1 does not significantly influence cMSC proliferation. In contrast, responses to glucose variations were observed in wt but not in Egr-1 -/- cMSCs by clonogenic assay. Phenotype analysis by RT-PCR showed that cMSCs Egr-1-/- lost the ability to regulate the glucose transporters GLUT-1 and GLUT-4 and, as expected, the Egr-1 target genes VEGF, TGFβ-1, and p300. Acetylated protein levels of H3 histone were impaired in Egr-1-/- compared to wt cMSCs. We propose that Egr-1 acts as immediate glucose biological sensor in cMSCs after a short period of stimuli, likely inducing epigenetic modifications. © 2014 Daniela Bastianelli et al.
Resumo:
Although the incretin hormone glucagon-like peptide-1 (GLP-1) is a potent stimulator of insulin release, its rapid degradation in vivo by the enzyme dipeptidyl peptidase IV (DPP IV) greatly limits its potential for treatment of type 2 diabetes. Here, we report two novel Ala8-substituted analogues of GLP-1, (Abu8)GLP-1 and (Val8)GLP-1 which were completely resistant to inactivation by DPP IV or human plasma. (Abu8)GLP-1 and (Val8)GLP-1 exhibited moderate affinities (IC50: 4.76 and 81.1 nM, respectively) for the human GLP-1 receptor compared with native GLP-1 (IC50: 0.37 nM). (Abu8)GLP-1 and (Val8)GLP-1 dose-dependently stimulated cAMP in insulin-secreting BRIN BD11 cells with reduced potency compared with native GLP-1 (1.5- and 3.5-fold, respectively). Consistent with other mechanisms of action, the analogues showed similar, or in the case of (Val8)GLP-1 slightly impaired insulin releasing activity in BRIN BD11 cells. Using adult obese (ob/ob) mice, (Abu8 )GLP-1 had similar glucose-lowering potency to native GLP-1 whereas the action of (Val8)GLP-1 was enhanced by 37%. The in vivo insulin-releasing activities were similar. These data indicate that substitution of Ala8 in GLP-1 with Abu or Val confers resistance to DPP IV inactivation and that (Val8)GLP-1 is a particularly potent N-terminally modified GLP-1 analogue of possible use in type 2 diabetes.
Resumo:
Background: Laparoscopic greater curvature plication (LGCP) is an emerging bariatric procedure that reduces the gastric volume without implantable devices or gastrectomy. The aim of this study was to explore changes in glucose homeostasis, postprandial triglyceridemia, and meal-stimulated secretion of selected gut hormones [glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), ghrelin, and obestatin] in patients with type 2 diabetes mellitus (T2DM) at 1 and 6 months after the procedure. Methods: Thirteen morbidly obese T2DM women (mean age, 53.2 ± 8.76 years; body mass index, 40.1 ± 4.59 kg/m2) were prospectively investigated before the LGCP and at 1- and 6-month follow-up. At these time points, all study patients underwent a standardized liquid mixed-meal test, and blood was sampled for assessment of plasma levels of glucose, insulin, C-peptide, triglycerides, GIP, GLP-1, ghrelin, and obestatin. Results: All patients had significant weight loss both at 1 and 6 months after the LGCP (p≤0.002), with mean percent excess weight loss (%EWL) reaching 29.7 ;plusmn2.9 % at the 6-month follow-up. Fasting hyperglycemia and hyperinsulinemia improved significantly at 6 months after the LGCP (p<0.05), with parallel improvement in insulin sensitivity and HbA1c levels (p<0.0001). Meal-induced glucose plasma levels were significantly lower at 6 months after the LGCP (p<0.0001), and postprandial triglyceridemia was also ameliorated at the 6-month follow-up (p<0.001). Postprandial GIP plasma levels were significantly increased both at 1 and 6 months after the LGCP (p<0.0001), whereas the overall meal-induced GLP-1 response was not significantly changed after the procedure (p ;gt0.05). Postprandial ghrelin plasma levels decreased at 1 and 6 months after the LGCP (p<0.0001) with no significant changes in circulating obestatin levels. Conclusion: During the initial 6-month postoperative period, LGCP induces significant weight loss and improves the metabolic profile of morbidly obese T2DM patients, while it also decreases circulating postprandial ghrelin levels and increases the meal-induced GIP response. © 2013 Springer Science+Business Media New York.