9 resultados para Immunoglobulin G -- administration
em Aston University Research Archive
Resumo:
A large body of evidence supports a role of oxidative stress in Alzheimer disease (AD) and in cerebrovascular disease. A vascular component might be critical in the pathophysiology of AD, but there is a substantial lack of data regarding the simultaneous behavior of peripheral antioxidants and biomarkers of oxidative stress in AD and vascular dementia (VaD). Sixty-three AD patients, 23 VaD patients and 55 controls were included in the study. We measured plasma levels of water-soluble (vitamin C and uric acid) and lipophilic (vitamin E, vitamin A, carotenoids including lutein, zeaxanthin, β-cryptoxanthin, lycopene, α- and β-carotene) antioxidant micronutrients as well as levels of biomarkers of lipid peroxidation [malondialdehyde (MDA)] and of protein oxidation [immunoglobulin G (IgG) levels of protein carbonyls and dityrosine] in patients and controls. With the exception of β-carotene, all antioxidants were lower in demented patients as compared to controls. Furthermore, AD patients showed a significantly higher IgG dityrosine content as compared to controls. AD and VaD patients showed similar plasma levels of plasma antioxidants and MDA as well as a similar IgG content of protein carbonyls and dityrosine. We conclude that, independent of its nature - vascular or degenerative - dementia is associated with the depletion of a large spectrum of antioxidant micronutrients and with increased protein oxidative modification. This might be relevant to the pathophysiology of dementing disorders, particularly in light of the recently suggested importance of the vascular component in AD development. Copyright © 2004 S. Karger AG, Basel.
Resumo:
Immunoglobulin G from rheumatoid patients is denatured around the hinge region. This has been proposed as an explanation for the presence of circulating autoantibodies to IgG in these patients. It has previously been suggested that oxygen radicals (OR) derived from activated polymorphs may play a role in denaturation in vivo. Using sera from rheumatoid patients and age-matched controls in a modified ELISA technique, we have investigated the potential for polyclonal rheumatoid factors (RF) to bind to OR denatured IgG. Three model systems were used to generate OR in vitro: (a) purified PMN s activated by the cell surface stimulant PMA, (b) radiolysis of IgG in solution to generate specifically the superoxide radical and, in a separate system, the hydroxyl radical, (OH.), (c) purified myeloperoxide in the presence of H2O2 and halide ions. Results: 1. The binding of both IgA and IgM RF s to PMN denatured IgG increased dose dependently for seropositive sera only. 2. The OH. radical but not the superoxide radical significantly increased the binding of IgA and M RF, again only for seropositive sera. 3. The myeloperoxidase enzyme system did not increase RF binding. 4. IgG incubated with elastase was not found to be a better antigen than native IgG. These results indicate that IgG is denatured by OR released from activated PMN, thereby producing an antigen for polyclonal RF s.
Resumo:
Lyophilisation or freeze drying is the preferred dehydrating method for pharmaceuticals liable to thermal degradation. Most biologics are unstable in aqueous solution and may use freeze drying to prolong their shelf life. Lyophilisation is however expensive and has seen lots of work aimed at reducing cost. This thesis is motivated by the potential cost savings foreseen with the adoption of a cost efficient bulk drying approach for large and small molecules. Initial studies identified ideal formulations that adapted well to bulk drying and further powder handling requirements downstream in production. Low cost techniques were used to disrupt large dried cakes into powder while the effects of carrier agent concentration were investigated for powder flowability using standard pharmacopoeia methods. This revealed superiority of crystalline mannitol over amorphous sucrose matrices and established that the cohesive and very poor flow nature of freeze dried powders were potential barriers to success. Studies from powder characterisation showed increased powder densification was mainly responsible for significant improvements in flow behaviour and an initial bulking agent concentration of 10-15 %w/v was recommended. Further optimisation studies evaluated the effects of freezing rates and thermal treatment on powder flow behaviour. Slow cooling (0.2 °C/min) with a -25°C annealing hold (2hrs) provided adequate mechanical strength and densification at 0.5-1 M mannitol concentrations. Stable bulk powders require powder transfer into either final vials or intermediate storage closures. The targeted dosing of powder formulations using volumetric and gravimetric powder dispensing systems where evaluated using Immunoglobulin G (IgG), Lactate Dehydrogenase (LDH) and Beta Galactosidase models. Final protein content uniformity in dosed vials was assessed using activity and protein recovery assays to draw conclusions from deviations and pharmacopeia acceptance values. A correlation between very poor flowability (p<0.05), solute concentration, dosing time and accuracy was revealed. LDH and IgG lyophilised in 0.5 M and 1 M mannitol passed Pharmacopeia acceptance values criteria with 0.1-4 while formulations with micro collapse showed the best dose accuracy (0.32-0.4% deviation). Bulk mannitol content above 0.5 M provided no additional benefits to dosing accuracy or content uniformity of dosed units. This study identified considerations which included the type of protein, annealing, cake disruption process, physical form of the phases present, humidity control and recommended gravimetric transfer as optimal for dispensing powder. Dosing lyophilised powders from bulk was demonstrated as practical, time efficient, economical and met regulatory requirements in cases. Finally the use of a new non-destructive technique, X-ray microcomputer tomography (MCT), was explored for cake and particle characterisation. Studies demonstrated good correlation with traditional gas porosimetry (R2 = 0.93) and morphology studies using microscopy. Flow characterisation from sample sizes of less than 1 mL was demonstrated using three dimensional X-ray quantitative image analyses. A platinum-mannitol dispersion model used revealed a relationship between freezing rate, ice nucleation sites and variations in homogeneity within the top to bottom segments of a formulation.
Resumo:
Gamma-hydroxybutyric acid (GHB) is an endogenous brain substance that has diverse neuropharmacological actions, including rewarding properties in different animal species and in humans. As other drugs of abuse, GHB affects the firing of ventral tegmental neurons (VTA) in anaesthetized animals and hyperpolarizes dopaminergic neurons in VTA slices. However, no direct behavioural data on the effects of GHB applied in the VTA or in the target regions of its dopaminergic neurons, e.g. the nucleus accumbens (NAc), are available. Here, we investigated the effects of various doses of intravenous GHB in maintaining self-administration (from 0.001 to 10 mg/kg per infusion), and its ability to induce conditioned place preference (CPP) in rats when given orally (175-350 mg/kg) or injected directly either in the VTA or NAc (from 10 to 300 microg/0.5 microl per side). Our results indicate that while only 0.01 mg/kg per infusion GHB maintained self-administration, although not on every test day, 350 mg/kg GHB given orally induced CPP. CPP was also observed when GHB was injected in the VTA (30-100 microg/0.5 microl per side) but not in the NAc. Together with recent in-vitro findings, these results suggest that the rewarding properties of GHB mainly occur via disinhibition of VTA dopaminergic neurons.
Resumo:
BACKGROUND & AIMS: The transferrin receptor (CD71) is up-regulated in duodenal biopsy samples from patients with active celiac disease and promotes retrotransport of secretory immunolglobulin A (SIgA)-gliadin complexes. We studied intestinal epithelial cell lines that overexpress CD71 to determine how interactions between SIgA and CD71 promote transepithelial transport of gliadin peptides. METHODS: We analyzed duodenal biopsy specimens from 8 adults and 1 child with active celiac disease. Caco-2 and HT29-19A epithelial cell lines were transfected with fluorescence-labeled small interfering RNAs against CD71. Interactions among IgA, CD71, and transglutaminase 2 (Tgase2) were analyzed by flow cytometry, immunoprecipitation, and confocal microscopy. Transcytosis of SIgACD71 complexes and intestinal permeability to the gliadin 3H-p3149 peptide were analyzed in polarized monolayers of Caco-2 cells. RESULTS: Using fluorescence resonance energy transfer and in situ proximity ligation assays, we observed physical interactions between SIgA and CD71 or CD71 and Tgase2 at the apical surface of enterocytes in biopsy samples and monolayers of Caco-2 cells. CD71 and Tgase2 were co-precipitated with SIgA, bound to the surface of Caco-2 cells. SIgACD71 complexes were internalized and localized in early endosomes and recycling compartments but not in lysosomes. In the presence of celiac IgA or SIgA against p3149, transport of intact 3H-p3149 increased significantly across Caco-2 monolayers; this transport was inhibited by soluble CD71 or Tgase2 inhibitors. CONCLUSIONS: Upon binding to apical CD71, SIgA (with or without gliadin peptides) enters a recycling pathway and avoids lysosomal degradation; this process allows apicalbasal transcytosis of bound peptides. This mechanism is facilitated by Tgase2 and might be involved in the pathogenesis of celiac disease.
Resumo:
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Little is known about the pharmacokinetics of potassium canrenoate/canrenone in paediatric patients WHAT THIS STUDY ADDS • A population pharmacokinetic model has been developed to evaluate the pharmacokinetics of canrenone in paediatric patients who received potassium canrenoate as part of their therapy in the intensive care unit. AIMS To characterize the population pharmacokinetics of canrenone following administration of potassium canrenoate to paediatric patients. METHODS Data were collected prospectively from 23 paediatric patients (2 days to 10 years of age; median weight 4 kg, range 2.16–28.0 kg) who received intravenous potassium canrenoate (K-canrenoate) as part of their intensive care therapy for removal of retained fluids, e.g. in pulmonary oedema due to chronic lung disease and for the management of congestive heart failure. Plasma samples were analyzed by HPLC for determination of canrenone (the major metabolite and pharmacologically active moiety) and the data subjected to pharmacokinetic analysis using NONMEM. RESULTS A one compartment model best described the data. The only significant covariate was weight (WT). The final population models for canrenone clearance (CL/F) and volume of distribution (V/F) were CL/F (l h−1) = 11.4 × (WT/70.0)0.75 and V/F (l) = 374.2 × (WT/70) where WT is in kg. The values of CL/F and V/F in a 4 kg child would be 1.33 l h−1 and 21.4 l, respectively, resulting in an elimination half-life of 11.2 h. CONCLUSIONS The range of estimated CL/F in the study population was 0.67–7.38 l h−1. The data suggest that adjustment of K-canrenoate dosage according to body weight is appropriate in paediatric patients.
Resumo:
A prerequisite for vaccine-mediated induction of CD8+ T-cell responses is the targeting of dendritic cell (DC) subsets specifically capable of cross-presenting antigen epitopes to CD8+ T cells. Administration of a number of cationic adjuvants via the intraperitoneal (i.p.) route has been shown to result in strong CD8+ T-cell responses, whereas immunization via e.g. the intramuscular (i.m.) or subcutaneous (s.c.) routes often stimulate weak CD8+ T-cell responses. The hypothesis for this is that self-drainage of the adjuvant/antigen to the lymphoid organs, which takes place upon i.p. immunization, is required for the subsequent activation of cross-presenting lymphoid organ-resident CD8α+ DCs. In contrast, s.c. or i.m. immunization usually results in the formation of a depot at the site of injection (SOI), which hinders the self-drainage and targeting of the vaccine to cross-presenting CD8α+ DCs. We investigated this hypothesis by correlating the biodistribution pattern and the adjuvanticity of the strong CD8+ T-cell inducing liposomal cationic adjuvant formulation 09 (CAF09), which is composed of dimethyldioctadecylammonium bromide/monomycoloyl glycerol liposomes with polyinosinic:polycytidylic acid electrostatically adsorbed to the surface. Biodistribution studies with radiolabeled CAF09 and a surface-adsorbed model antigen [ovalbumin (OVA)] showed that a significantly larger fraction of the vaccine dose localized in the draining lymph nodes (dLNs) and the spleen 6 h after i.p. immunization, as compared to after i.m. immunization. Studies with fluorescently labelled OVA + CAF09 demonstrated a preferential association of OVA + CAF09 to DCs/monocytes, as compared to macrophages and B cells, following i.p. immunization. Administration of OVA + CAF09 via the i.p. route did also result in DC activation, whereas no DC activation could be measured within the same period with unadjuvanted OVA and OVA + CAF09 administered via the s.c. or i.m. routes. In the dLNs, the highest level of activated, cross-presenting CD8α+ DCs was detected at 24 h post immunization, whereas an influx of activated, migrating and cross-presenting CD103+ DCs to the dLNs could be measured after 48 h. This suggests that the CD8α+ DCs are activated by self-draining OVA + CAF09 in the lymphoid organs, whereas the CD103+ DCs are stimulated by the OVA + CAF09 at the SOI. These results support the hypothesis that the self-drainage of OVA + CAF09 to the draining LNs is required for the activation of CD8α+ DCs, while the migratory CD103+ DCs may play a role in sustaining the subsequent induction of strong CD8+ T-cell responses.