3 resultados para Ileum

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The responses of the electrically stimulated guinea-pig ileum and vas deferens to human and rat calcitonin gene-related peptide (CGRP) and amylin were investigated. 2. The inhibition of contraction of the ileum produced by human alpha CGRP was antagonized by human alpha CGRP8-37 (apparent pA2 estimated at 7.15 +/- 0.23) > human alpha CGRP19-37 (apparent pA2 estimated as 6.67 +/- 0.33) > [Tyr0]-human alpha CGRP28-37. The amylin antagonist, AC187, was three fold less potent than CGRP8-37 in antagonizing human alpha CGRP. 3. Both human beta- and rat alpha CGRP inhibited contractions of the ileum, but this was less sensitive to inhibition by CGRP8-37 than the effect of human alpha CGRP. However, CGRP19-37 was twenty times more effective in inhibiting the response to rat alpha CGRP (apparent pA2 estimated as 8.0 +/- 0.1) compared to human alpha CGRP. 4. Rat amylin inhibited contractions in about 10% of ileal preparations; this effect was not antagonized by any CGRP fragment. Human amylin had no action on this preparation. 5. Both human and rat alpha CGRP inhibited electrically stimulated contractions of the vas deferens, which were not antagonized by 3 microM CGRP8-37 or 10 microM AC187. 6. Rat amylin inhibited the stimulated contractions of the vas deferens (EC50 = 77 +/- 9 nM); human amylin was less potent (EC50 = 213 +/- 22 nM). The response to rat amylin was antagonized by 10 microM CGRP8-37 (EC50 = 242 +/- 25 nM) and 10 microM AC187 (EC50 = 610 +/- 22 nM). 7. It is concluded that human alpha CGRP relaxes the guinea-pig ileum via CGRP1-like receptors, but that human beta CGRP and rat alpha CGRP may use additional receptors. These are distinct CGRP2-like and amylin receptors on guinea-pig vas deferens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The action of bradykinin on transepithelial transfer of sodium and water in isolated rat jejunum and on smooth muscle contraction of rat terminal ileum has been investigated. (1) Bradykinin was shown to stimulate transfer at low control transfer, inhibit transfer at high control transfer and have no effect at intermediate transfer in rat jejunal sacs. Stimulation of transfer occurred only when bradykinin was in the serosal solutiun while inhibition of transfer occurred whether bradykinin was in the aerosal or mucosal solution. Bradykinin-induced stimulation of transfer was not affected by adrenalectomy, nephrectomy, combined adrenalectomy-nephrectomy,  nor maintenance on 1% saline drinking solution or low sodium diet pretreatment. Meclofenamic acid abolished the bradykinin-induced inhibition of water transfer while prostaglandins A1, E1 aud F2α all potentiated this action. Theophylline inhibited water transfer and potentiated the bradykinin-induced inhibition of water transfer. Cyclic AMP and dibutyryl cyclic AMP both inhibited water transfer and the bradykinin-induced inhibition of water transfer was potentiated by the latter. ( 2 ) Bradykinin-induced contractions of rat terminal ileum were little affected by hyoscine while those of acetylcholine were abolished. Anoxia reduced markedly responses tv bradykinin while those of acetylcholine were little affected . Theophylline reduced the responses of rat terminal ileum to bradykinin significantly more than those to acetylcholine. Aspirin and indomethacin reduced markedly the responses to bradykinin while not affecting those to acetylcholine and PGT2. Meslofenamic acid at a concentration of 3.4 µM blocked bradykinin-induced contractions but had no effect on those to acctylcholine, PGE2 or PGF2 and at a concentration of 17. 0 µM drastically reduced bradykinin responses but also reduced those to acetylcholine, PGE2 and PGF2α• Flufenamic acid drastically reduced responses to bradykinin while not affecting those to acetylcholine and PGE2 and slightly affecting those to PGF2α. Polyphloretin phosphate reduced responses to bradykinin, PGF2α and PGE2 but not acetylcholine . Diphloretin phosphate reduced responses to bradykinin, PGF2 and PGE2 in a dose dependent manner but not those to acetylcholine. SC 19220 , in a dose dependent manner, inhibited responses to bradykinin and PGE2 but not to acetylcholine and PGF2. 7 oxa - 13 -prostynoic acid non specifically reduced responses to acetylcholine, bradykinin and PGE2. Bradykinin, in the presence of SQ 20881 , increased the release of prostaglandin-like activity from rat terminal ileum and this was reduced or abolished in the presence of indomethacin, aspirin, meclofenamic acid or flufenamio acid. The extract of PG-like activity did not appear as PGE, PGA or PGFon TLC, but included a substance with similar mobility as 15-Keto-prosta-glandin E2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this study were to examine the binding characteristics of the rat CGRP receptor and to further the classification of CGRP and amylin receptors in guinea-pig tissue preparations. Binding characteristics of CGRP were investigated on rat splenic, cerebellar and liver membrane preparations. Human-α-CGRP, rat-α-CGRP and the CGRP receptor analogues Tyrº -CGRPC28-37) and [Cys (ACM)2,7 ]-human CGRP and the CGRP receptor antagonist CGRPC8-37) were utilised in competitive radioligand binding experiments to identify possible CGRP receptor subtypes in these tissues. There appeared to be no significant differences between the rat CGRP receptors examined. A panel of monoclonal antibodies (Mabs) raised against CGRP were employed to investigate the structure-activity relationships of CGRP and its receptor. No differences between the tissue receptors were observed using this panel of Mabs. The effects of human-α, human-β, rat-α-CGRP, human and rat amylin and adrenomedullin(13-52) were examined on the spontaneously beating right atria and on electrically evoked twitch contractions of isolated guinea-pig ileum, vas deferens and left atria. All of the peptides caused concentration-dependent inhibition of twitch amplitude in the ileum and vas deferens. CGRP produced positive inotropic effects in the right and left atria and positive chronotropic effects in the right atria. A variety of CGRP receptor antagonists and putative amylin receptor antagonists were used to antagonise these effects. CGRP(8-37) is currently used as a basis for CGRP receptor classification (Dennis, et al., 1989). Based upon results obtained using CGRP(8-37) it has been shown that the guinea-pig ileum contains mainly CGRP 1 receptors and the vas deferens contain CGRP2 receptors. Amylin was shown to act at receptors distinct from those for CGRP and it is postulated that amylin has its own receptors in these preparations. Experiments using CGRP (19-37) and Tyrº -CGRP(28-37) indicate that human and rat CGRP act at distinct receptors in guinea-pig ileum and vas deferens. The amylin receptor antagonist amylin(8-37) and the putative antagonist AC187 provide evidence to suggest human and rat amylin also act at receptors able to distinguish between the two types of amylin.