4 resultados para Icelandic wit and humor.
em Aston University Research Archive
Resumo:
Based on a corpus of English, German, and Polish spoken academic discourse, this article analyzes the distribution and function of humor in academic research presentations. The corpus is the result of a European research cooperation project consisting of 300,000 tokens of spoken academic language, focusing on the genres research presentation, student presentation, and oral examination. The article investigates difference between the German and English research cultures as expressed in the genre of specialist research presentations, and the role of humor as a pragmatic device in their respective contexts. The data is analyzed according to the paradigms of corpus-assisted discourse studies (CADS). The findings show that humor is used in research presentations as an expression of discourse reflexivity. They also reveal a considerable difference in the quantitative distribution of humor in research presentations depending on the educational, linguistic, and cultural background of the presenters, thus confirming the notion of different research cultures. Such research cultures nurture distinct attitudes to genres of academic language: whereas in one of the cultures identified researchers conform with the constraints and structures of the genre, those working in another attempt to subvert them, for example by the application of humor. © 2012 Elsevier B.V.
Resumo:
Competition between three foliose, saxicolous lichens common on slate rock in South Gwynedd, Wales, U.K. was studied experimentally using the de Wit design. Fragments of the three species were cut from the edges of large thalli, glued to 5 x 5 cm plots marked out on pieces of slate which were then placed on boards in the field. For each combination of pairs of species, the two species were grown either in monoculture at a density of 24 fragments per plot or together in three mixtures in differing proportions, i.e. species A:B with 16:8, 12:12 and 8:16 fragments per plot; the density remaining constant throughout. Area of the species in the plots after 3 years was used as an estimate of growth. Physcia orbicularis and Parmelia glabratula ssp. fuliginosa grew similarly in monoculture. In mixtures of the two, growth of each species was linearly related to its proportion in a mixture, suggesting little competition had occurred during three years. By contrast, the growth of Parmelia conspersa in monoculture was significantly greater than that of P. orbicularis or P. glabratula. In addition, the growth of both species was substantially reduced in mixtures with P. conspersa; P. glabratula being eliminated in the mixture in which it was the minority species. These results suggest that P. conspersa should predominate in communities with either of the other two species and, in the absence of P. conspersa, communities dominated by P.orbicularis and P. glabratula should be more stable.
Resumo:
Energy dissipation and fatigue properties of nano-layered thin films are less well studied than bulk properties. Existing experimental methods for studying energy dissipation properties, typically using magnetic interaction as a driving force at different frequencies and a laser-based deformation measurement system, are difficult to apply to two-dimensional materials. We propose a novel experimental method to perform dynamic testing on thin-film materials by driving a cantilever specimen at its fixed end with a bimorph piezoelectric actuator and monitoring the displacements of the specimen and the actuator with a fibre-optic system. Upon vibration, the specimen is greatly affected by its inertia, and behaves as a cantilever beam under base excitation in translation. At resonance, this method resembles the vibrating reed method conventionally used in the viscoelasticity community. The loss tangent is obtained from both the width of a resonance peak and a free-decay process. As for fatigue measurement, we implement a control algorithm into LabView to maintain maximum displacement of the specimen during the course of the experiment. The fatigue S-N curves are obtained.