34 resultados para ISOTACTIC-POLYPROPYLENE
em Aston University Research Archive
Resumo:
The interaction of ionising radiation with polymers is described and the literature relating; to the effects on polypropylene is reviewed. Oxidative and free radical reactions are discussed with particular reference to post-irradiationeffects.Isotactic and atactic polypropylene were δ and electron irradiated to doses of up to 20 megarad. Irradiations weremainly made in air. A series of other polymers were also irradiated in a preliminary survey. Molar mass measurements are used to measure the radiationyield for chain scission G (s). Irradiation at room temperature causes significantly more chain scission than at 195K. Additional chain scission occurs on storage following irradiation at 195 K. Free radical concentrations are determined by electron spin resonance, and the decay rates measured. The radical formed in air is a peroxy radical and in vacuo is a hydrocarbon radical. At77K in vacuo the radical is -CH2 - C* (CH3) - CH2 - but additional radicals are produced on warning to room temperature. The effects of increasing tenparature on radicals formed in air are described. Electron spin resonance studies on atactic polypropylene,and isotactic polypropylene in hydrogen, sulphur dioxide and nitric oxide are reported.. The melting temperatures, spherulite growth rates, and isothermal crystallisation rates of irradiated polypropylene are compared to those of the non-irradiated polymer. Crystallisation is found to proceed with an Avrami integer n = 2. At a given crystallisation temperature, the overall crystallisation rate of irradiated polymer is less than the non-irradiated, but spherulite growth rates are identical. Thermogravimetric analysis is used to assess the thermal stability of irradiated polypropylene in nitrogen, air and oxygen. Hydroperoxide analysis is used to show that several molecules of oxygen are absorbed for each initial radical, and that hydroperoxides continue to be formed for a long period following irradiation. Possible solutions for minimising irradiation and post-irradiation degradation are suggested, together with some problems for further study.
Resumo:
variety of hindered phenol and hindered piperidine antioxidants containing vinyl or vinylidine functional groups have been synthesised and some of these were successfully bound to Polypropylene backbone during processing operations in presence of a radical generator. Up to 20% concentrates were prepared using this technique. Commercially acceptable concentrates (MASTERBATCHES) can only be prepared with antioxidants that are only weakly chain breaking such as hindered piperidines. One of the antioxidants, AATP was found to polymrise as well as bind to Polypropylene. Bound antioxidants were found to be resistant to such channels of physical loss as solvent extraction. Temperature and concentration of the additive and radical generator were found to be important parameters in the preparation of the concentrates. The stabilising efficiences of the diluted bound antioxidants alone, and in combination (synergistic) with other antioxidants have been evaluated. Results of both thermal and photo-oxidative stabilities of the bound samples in Polypropylene show that the restriction on free mobility of the bound antioxidants in the polymer has virtually no effect on its stabilising efficiency. Bound AATP was found to generate nitroxyl radicals during the course of its stabilising activities, and in combination with a small amount of Irganox 1076, it was shown to be highly synergistic thermally. A mechanism of catalytic phenol regeneration by the resultant piperidine hydroxylamine was proposed. Although the mechanical properties of the masterbatches were affected by the transformation, this was not found to be carried over to the diluted samples. This work has shown that bound concentrates can be effectively prepared in saturated polymers for subsequent dilution to normal concentrates used in commercial stabilisation.
Resumo:
Two reactive comonomers, divinyl benzene (DVB) and trimethylolpropane triacrylate (TRIS), were evaluated for their role in effecting the melt free radical grafting reaction of the monomer glycidyl methacrylate (GMA) onto polypropylene (PP). The characteristics of the GMA-grafting systems in the presence and absence of DVB or TRIS were examined and compared in terms of the yield of the grafting reaction and the extent of the main side reactions, namely homopolymerisation of GMA (poly-GMA) and polymer degradation, using different chemical compositions of the reactive systems and processing conditions. In the absence of the comonomers, i.e. in a conventional system, high initiator concentrations of peroxides were typically required to achieve the highest possible GMA grafting levels which were found to be generally low. Concomitantly, both poly-GMA and degradation of the polymer by chain scission takes place with increasing initiator amounts. On the other hand, the presence of a small amount of the comonomers, DVB or Tris, in the GMA-grafting system, was shown to bring about a significant increase in the grafting level paralleled by a large reduction in poly-GMA and PP degradation. In the presence of these highly reactive comonomers, the optimum grafting system requires a much lower concentration of the peroxide initiator and, consequently, would lead to the much lower degree of polymer degradation observed in these systems. The differences in the effects of the presence of DVB and that of TRIS in the grafting systems on the rate of the GMA-grafting and homopolymerisation reactions, and the extent of PP degradation (through melt flow changes), were compared and contrasted with a conventional GMA-grafting system.
Resumo:
A new method for debromination of organics by a reductive medium like polypropylene is investigated. The reaction is carried out in inert atmosphere to avoid rapid oxidation of the polymer. Through this detoxification procedure, hydrogen bromide and small brominated alkanes are formed. Experiments in closed ampoules are carried out with tetrabromobisphenol A, dibromophenol, pentabromodiphenyl ether, dichlorophenol and an oil formed by pyrolysis of printed circuit boards in the Haloclean® process. The reaction is examined under isothermal conditions in a temperature range between 300 and 400°C and a residence time between 10 and 30 min. Optimal conditions were found at 350°C and at a residence time of 20 min. As chlorinated phenols are not destroyed under these conditions, the process may be a valuable procedure to gain hydrogen bromide out of mixtures of halogenated feed materials. Also, under atmospheric pressure, a reaction between polypropylene and brominated compounds takes place as could be proved by thermogravimetric analysis. Bromobenzene has an accelerating effect on the rate of weight loss of the polymer, but at higher concentrations, it can also be slowed down. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Halogen-containing aromatics, mainly bromine-containing phenols, are harmful compounds contaminating pyrolysis oil from electronic boards containing halogenated flame retardants. In addition, theirformation increases the potential for evolution of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs) at relatively low temperature (up to 500 °C). As a model compound, 2,4-dibromophenol (DBP) was pyrolyzed at 290-450 °C. While its pyrolysis in a nitrogen flow reactor or in encapsulated ampules yields bromine-containing phenols, phenoxyphenols, PBDDs, and PBDFs, pyrolysis of DBP in a hydrogen-donating medium of polypropylene (PP) at 290-350 °C mainly results in the formation of phenol and HBr, indicating the occurrence of a facile hydrodebromination of DBP. The hydrodebromination efficiency depends on temperature, pressure, and the ratio of the initial components. This thermal behavior of DBP is compared to that of 2,4-dichlorophenol and decabromodiphenyl ether. A treatment of halogen-containing aromatics with PP offers a new perspective on the development of low-environmental-impact disposal processes for electronic scrap. © 2005 American Chemical Society.
Resumo:
Melt processing is a critical step in the manufacture of polymer articles and is even more critical when dealing with inhomogeneous polymer-clay nanocomposites systems. The chemical composition, and in particular the clay type and its organic modification, also plays a major contribution in determining the final properties and in particular the thermal and long-term oxidative stability of the resulting polymer nanocomposites. Proper selection and tuning of the process variable should, in principle, lead to improved characteristics of the fabricated product. With multiphase systems containing inorganic nanoclays, however, this is not straightforward and it is often the case that the process conditions are chosen initially to improve one or more desired properties at the expense of others. This study assesses the influence of organo-modified clays and the processing parameters (extrusion temperature and screw speed) on the rheological and morphological characteristics of polymer nanocomposites as well as on their melt and thermo-oxidative stability. Nanocomposites (PPNCs) based on PP, maleated PP and organically modified clays were prepared in different co-rotating twin-screw extruders ranging from laboratory scale to semi-industrial scale. Results show that the amount of surfactant present in similar organo-modified clays affects differently the thermo-oxidative stability of the extruded PPNCs and that changes in processing conditions affect the clay morphology too. By choosing an appropriate set of tuned process variables for the extrusion process it would be feasible to selectively fabricate polymer-clay nanocomposites, with the desired mechanical and thermo-oxidative characteristics. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Polymers are subject to oxidation throughout their lifecycle. Antioxidants are generally incorporated in polymers to inhibit or minimise oxidative degradation. Hindered phenolic antioxidants are important stabilisers for polyolefins. However, hindered phenols undergo chemical transformations while performing their antioxidant function during processing and fabrication. In addition, antioxidants are subject to loss from polymers during processing, or subsequently in-service. Migration of antioxidants is a major concern in applications involving polymers in direct contact with food and human environment. This concern is compounded by the realisation that very little is known about the nature and the migration behaviour of antioxidant transformation products. In this work, the antioxidant role of the biological antioxidant -tocopherol (Vitamin E) , which is structurally similar to many synthetic hindered phenols, is investigated in low density polyethylene (LDPE) and polypropylene (PP). The melt stabilising effectiveness of -tocopherol (Toc) was found to be very high, higher than that of commercial hindered phenol antioxidants, such as Irganox 1076 (Irg 1076) and Irganox 1010 (Irg 1010), after multiple extrusions, especially at very low concentrations. The high antioxidant activity of Toc was shown to be due, at least in part, to the formation of transformation products during processing. The main products formed are stereoisomers of dimers and trimers, as well as aldehydes and a quinone - the relative concentration of each was shown to depend on the processing severity, the initial antioxidant concentration and oxygen availability. These transformation products are shown to impart better, similar or lower melt stability to the polymer than the parent antioxidant. The nature of the products formed from Toc during processing was compared with those formed during processing of Irg 1076 and Irg 1010 with LDPE and a mechanism for the melt stabilisation of Toc was proposed and compared with the stabilisation mechanisms of the synthetic antioxidants Irg 1076 and Irg 1010.
Resumo:
The main objectives of this research were to develop optimised chemical compositions and reactive processing conditions for grafting a functional monomer maleic anhydride (MA) in polypropylene (PP), ethylene propylene diene monomer (EPDM) and mixtures of PP-EPDM, and to optimise synthetic routes for production of PP/EPDM copolymers for the purpose of compatibilisation of PP/EPDM blends. The MA-functionalisation was achieved using an internal mixer in the presence of low concentrations (less than 0.01 molar ratio) of a free radical initiator. Various methods were used to purify MA-functionalised PP and the grafting yield was determined using either FTIR or titrametry. The grafting yield of MA alone, which due to its low free-radical reactivity towards polymer macroradicals, was accompanied by severe degradation in the case of PP and crosslinking for EPDM. In the case of MA-functionalised PP/EPDM, both degradation and crosslinking occurred though not to a great extent. The use of tri-functional coagents e.g. trimethylopropane triacrylates (TRIS) with MA, led to high improvement of the grafting yield of MA on the polymers. This is almost certainly due to high free-radical activity of TRIS leading to copolymerisation of MA and TRIS which was followed by grafting of the copolymer onto the polymer backbone. In the case of PP, the use of coagent was also found to reduce the polymer degradation. PP/EPDM copolymers with optimum tensile properties were synthesised using a 'one-step' continues reactive processing procedure. This was achieved firstly by functionalisation of a mixture of PP (higher w/w ratio) and EPDM (low w/w ratio) with MA, in the presence of the coagent TRIS and a small concentration of a free radical initiator. This was then followed by an imidisation reaction with the interlinking agent hexamethylene diamine (HEMDA). Small amount of copolymers, up to 5 phr, which were interlinked with up to 15 phr of HEMDA, were sufficient to compatibilise PP/EPDM75/25 blends resulting in excellent tensile properties compared to binary PP/EPDM 75/25 blend. Improvement in blend's compatibility and phases-stabilisation (observed through tensile and SEM analysis) was shown in all cases with significant interphases adhesion improvement between PP and EPDM, and reduction in domain size across the fractured surface indicating efficient distribution of the compatibiliser.
Resumo:
Grafting of antioxidants and other modifiers onto polymers by reactive extrusion, has been performed successfully by the Polymer Processing and Performance Group at Aston University. Traditionally the optimum conditions for the grafting process have been established within a Brabender internal mixer. Transfer of this batch process to a continuous processor, such as an extruder, has, typically, been empirical. To have more confidence in the success of direct transfer of the process requires knowledge of, and comparison between, residence times, mixing intensities, shear rates and flow regimes in the internal mixer and in the continuous processor.The continuous processor chosen for the current work in the closely intermeshing, co-rotating twin-screw extruder (CICo-TSE). CICo-TSEs contain screw elements that convey material with a self-wiping action and are widely used for polymer compounding and blending. Of the different mixing modules contained within the CICo-TSE, the trilobal elements, which impose intensive mixing, and the mixing discs, which impose extensive mixing, are of importance when establishing the intensity of mixing. In this thesis, the flow patterns within the various regions of the single-flighted conveying screw elements and within both the trilobal element and mixing disc zones of a Betol BTS40 CICo-TSE, have been modelled using the computational fluid dynamics package Polyflow. A major obstacle encountered when solving the flow problem within all of these sets of elements, arises from both the complex geometry and the time-dependent flow boundaries as the elements rotate about their fixed axes. Simulation of the time dependent boundaries was overcome by selecting a number of sequential 2D and 3D geometries, used to represent partial mixing cycles. The flow fields were simulated using the ideal rheological properties of polypropylene and characterised in terms of velocity vectors, shear stresses generated and a parameter known as the mixing efficiency. The majority of the large 3D simulations were performed on the Cray J90 supercomputer situated at the Rutherford-Appleton laboratories, with pre- and postprocessing operations achieved via a Silicon Graphics Indy workstation. A mechanical model was constructed consisting of various CICo-TSE elements rotating within a transparent outer barrel. A technique has been developed using coloured viscous clays whereby the flow patterns and mixing characteristics within the CICo-TSE may be visualised. In order to test and verify the simulated predictions, the patterns observed within the mechanical model were compared with the flow patterns predicted by the computational model. The flow patterns within the single-flighted conveying screw elements in particular, showed good agreement between the experimental and simulated results.
Resumo:
This thesis was concerned primarily with the synthesis and the ring-opening polymerisation of anhydrosulfites (1,3,2-dioxa-thiolan-4-one-2-oxides), and secondly with the copolymerisation of anhydrosulfites with -caprolactone. The polyesters and copolyesters synthesised are of considerable interest in medical applications and also for use as environmental friendly packaging. A range of anhydrosulfites were prepared according to an established method. Aliphatic anhydrosulfites were obtained with a level of purity satisfactory for polymerisation whereas aromatic anhydrosulfites decomposed during distillation and purification by chromatographic techniques. Aliphatic anhydrosulfites with a substituent, such as methyl, isopropyl, n-butyl and isobutyl were studied by NMR spectroscopy. Analysis of these spectra revealed that the five-membered anhydrosulfite ring was puckered and that when the substituent was bulky, rotations about the alkyl chains were restricted. A wide range of anionic initiators may be used to initiate anhydrosulfites. Lithium alkyls turned out to be more successful than alkali metal alkoxides and amides. The molecular weights were found to depend on the basicity of the initiator, the monomer-to-initiator ratio, the nature of the solvent and the polymerisation temperature. The molecular weight M0 of poly(L-lactic acid) ranged from (0.5 to 6)x104. Highly crystalline and purely isotactic poly(lactic acid) was synthesised from L-lactic acid anhydrosulfite (L-LAAS) whereas DL-LAAS led to an amorphous polymer with randomly distributed D-and L-lactic units. This indicated that this polymerisation was not stereoselective. However, the bulkiness of the substituent in the anhydrosulfites molecule was found to influence the stereoselectivity of the polymerisation, thus polyesters with isobutyl or n-butyl pendant group were preferentially isotactic. Block-copolymers of ε-caprolactone and several anhydrosulfites were successfully produced. Block-copolymers of LAAS with ε-caprolactone were also synthesised, but the incorporation of caprolactone units was rather small. In contrast, random copolymerisation of LAAS and ε-caprolactone led to polymers with blocky structures similar to those obtained in the block-copolymerisation of LAAS with ε-caprolactone.
Resumo:
Functionalisation of polystyrene, PS, and ethylene-co-propylene-co-cyclopentadiene terpolymer, EPDM, with acrylic acid, AA, in a melt reactive processing procedure, in the presence of peroxide, trigonox 101, and coagents, Divinyl benzene, DVB (for PS), and trimethylolpropane triacrylate, TRIS (for EPDM), were successfully carried out. The level of grafting of the AA, as determined by infrared analysis, was significantly enhanced by the coagents. The grafting reaction of AA takes place simultaneously with homopolymerisation of the monomers, melt degradation and crosslinking reactions of the polymers. The extent of these competing reactions were inferred from measurements of melt flow index and insoluble gel content. Through a judicious use of both the peroxide and the coagent, particularly TRIS, unwanted side reactions were minimized. Five different processing methods were investigated for both functionalisation experiments; the direct addition of the pre-mixed polymer with peroxide and reactive modifiers was found to give optimum condition for grafting. The functionalised PS, F-PS, and EPDM, F-EPD, and maleinised polypropylene carrying a potential antioxidant, N-(4-anilinophenyl maleimide), F-PP were melt blended in binary mixtures of F-PS/F-EPD and F-PP/F-EPD in the presence (or absence) of organic diamines which act as an interlinking agent, e.g, Ethylene Diamine, EDA, and Hexamethylene Diamine, HEMDA. The presence of an interlinking agent, particularly HEMDA shows significant enhancement in the mechanical properties of the blend, suggesting that the copolymer formed has acted as compatibiliser to the otherwise incompatible polymer pairs. The functionalised and amidised blends, F and A-PSIEPDM (SPOI) and F and A-PPIEPDM (SPD2) were subsequently used as compatibiliser concentrates in the corresponding PSIEPDM and PPIEPDM blends containing various weight propotion of the homopolymers. The SPD1 caused general decreased in tensile strength, albeit increased in drop impact strength particularly in blend containing high PS content (80%). The SPD2 was particularly effective in enhancing impact strength in blends containing low weight ratio of PP (<70%). The SPD2 was also a good thermal antioxidant albeit less effective than commercial antioxidant. In all blends the evidence of compatibility was examined by scanning electron microscopy.
Resumo:
N-vinylcarbazole was polymerised using the free radical catalyst (azo-bisisobutyronitrile) and cationic catalysts (boron-trifluoride etherate and aluminium chloride). The polymers produced were characterised by molecular weight measurements and powder x-ray diffraction. The tacticity of the polymer samples was determined using proton and carbon-13 nuclear magnetic resonance spectroscopy. Measurements of their static dielectric permittivity and electro-optical birefringence (Kerr effect) in solution in 1,4-dioxane were carried out over a range of temperatures. The magnitudes of the dipole moments and Kerr constants were found to vary with changes in the tacticity of poly(N-vinylcarbazole). The results of these measurements support the view that the stereostructure of poly(N-vinylcarbazole) is sensitive to the mechanism of polymerisation. These results, together with proton and carbon-13 N.M.R. data, are discussed in terms of the possible conformations of the polymer chains and the relative orientation of the bulky carbazole side groups. The dielectric and molecular Kerr effect studies have also been carried out on complexes formed between 2,4,7-trinitro-9-fluorenone (TNF) and different stereoregular forms of poly(N-vinylcarbazole) in solution in 1,4-dioxane. The differences in the molar Kerr constants between pure (uncomplexed) and complexed poly(N-vinylcarbazole) samples were attributed to changes in optical anisotropy and dipole moments. A molecular modelling computer program Desktop Molecular Modeller was used to examine the 3/1 helical isotactic and 2/1 helical syndiotactic forms of poly(N-vinylcarbazole). These models were used to calculate the pitch distances of helices and the results were interpreted in terms of van der Waal's radii on TNF. This study indicated that the pitch distance in 3/1 isotactic helices was large enough to accommodate the bulky TNF molecules to form sandwich type charge transfer complexes whereas the pitch distance in syndiotactic poly(N-vinylcarbazole) was smaller and would not allow a similar type of complex formation.