3 resultados para ISOPARAMETRIC HYPERSURFACES
em Aston University Research Archive
Resumo:
The work described in this thesis deals with the development and application of a finite element program for the analysis of several cracked structures. In order to simplify the organisation of the material presented herein, the thesis has been subdivided into two Sections : In the first Section the development of a finite element program for the analysis of two-dimensional problems of plane stress or plane strain is described. The element used in this program is the six-mode isoparametric triangular element which permits the accurate modelling of curved boundary surfaces. Various cases of material aniftropy are included in the derivation of the element stiffness properties. A digital computer program is described and examples of its application are presented. In the second Section, on fracture problems, several cracked configurations are analysed by embedding into the finite element mesh a sub-region, containing the singularities and over which an analytic solution is used. The modifications necessary to augment a standard finite element program, such as that developed in Section I, are discussed and complete programs for each cracked configuration are presented. Several examples are included to demonstrate the accuracy and flexibility of the technique.
Resumo:
Numerical techniques have been finding increasing use in all aspects of fracture mechanics, and often provide the only means for analyzing fracture problems. The work presented here, is concerned with the application of the finite element method to cracked structures. The present work was directed towards the establishment of a comprehensive two-dimensional finite element, linear elastic, fracture analysis package. Significant progress has been made to this end, and features which can now be studied include multi-crack tip mixed-mode problems, involving partial crack closure. The crack tip core element was refined and special local crack tip elements were employed to reduce the element density in the neighbourhood of the core region. The work builds upon experience gained by previous research workers and, as part of the general development, the program was modified to incorporate the eight-node isoparametric quadrilateral element. Also. a more flexible solving routine was developed, and provided a very compact method of solving large sets of simultaneous equations, stored in a segmented form. To complement the finite element analysis programs, an automatic mesh generation program has been developed, which enables complex problems. involving fine element detail, to be investigated with a minimum of input data. The scheme has proven to be versati Ie and reasonably easy to implement. Numerous examples are given to demonstrate the accuracy and flexibility of the finite element technique.
Resumo:
The analysis and prediction of the dynamic behaviour of s7ructural components plays an important role in modern engineering design. :n this work, the so-called "mixed" finite element models based on Reissnen's variational principle are applied to the solution of free and forced vibration problems, for beam and :late structures. The mixed beam models are obtained by using elements of various shape functions ranging from simple linear to complex cubic and quadratic functions. The elements were in general capable of predicting the natural frequencies and dynamic responses with good accuracy. An isoparametric quadrilateral element with 8-nodes was developed for application to thin plate problems. The element has 32 degrees of freedom (one deflection, two bending and one twisting moment per node) which is suitable for discretization of plates with arbitrary geometry. A linear isoparametric element and two non-conforming displacement elements (4-node and 8-node quadrilateral) were extended to the solution of dynamic problems. An auto-mesh generation program was used to facilitate the preparation of input data required by the 8-node quadrilateral elements of mixed and displacement type. Numerical examples were solved using both the mixed beam and plate elements for predicting a structure's natural frequencies and dynamic response to a variety of forcing functions. The solutions were compared with the available analytical and displacement model solutions. The mixed elements developed have been found to have significant advantages over the conventional displacement elements in the solution of plate type problems. A dramatic saving in computational time is possible without any loss in solution accuracy. With beam type problems, there appears to be no significant advantages in using mixed models.