40 resultados para ISCHEMIA-INDUCED LOSS
em Aston University Research Archive
Resumo:
Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and ß1 integrin co-signaling pathway. By using a5 null cells, ß1 integrin functional blocking antibody, and a a5ß1 integrin targeting peptide A5-1, we demonstrate that the a5 and ß1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCa is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.
Resumo:
Tissue transglutaminase (TG2) is a multifunctional Ca2+ activated protein crosslinking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a non-transamidating mechanism via its association with fibronectin (FN), heparan sulphates (HS) and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modelling and mutagenesis we have identified the HS binding site of TG2 202KFLKNAGRDCSRRSSPVYVGR222. We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate the RGD-induced loss of cell adhesion on FN via binding to syndecan-4, leading to activation of PKCa, pFAK-397 and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed.
Resumo:
The main aim of this thesis is to investigate the application of methods of differential geometry to the constraint analysis of relativistic high spin field theories. As a starting point the coordinate dependent descriptions of the Lagrangian and Dirac-Bergmann constraint algorithms are reviewed for general second order systems. These two algorithms are then respectively employed to analyse the constraint structure of the massive spin-1 Proca field from the Lagrangian and Hamiltonian viewpoints. As an example of a coupled field theoretic system the constraint analysis of the massive Rarita-Schwinger spin-3/2 field coupled to an external electromagnetic field is then reviewed in terms of the coordinate dependent Dirac-Bergmann algorithm for first order systems. The standard Velo-Zwanziger and Johnson-Sudarshan inconsistencies that this coupled system seemingly suffers from are then discussed in light of this full constraint analysis and it is found that both these pathologies degenerate to a field-induced loss of degrees of freedom. A description of the geometrical version of the Dirac-Bergmann algorithm developed by Gotay, Nester and Hinds begins the geometrical examination of high spin field theories. This geometric constraint algorithm is then applied to the free Proca field and to two Proca field couplings; the first of which is the minimal coupling to an external electromagnetic field whilst the second is the coupling to an external symmetric tensor field. The onset of acausality in this latter coupled case is then considered in relation to the geometric constraint algorithm.
Resumo:
Background - Plants have proved to be an important source of anti-cancer drugs. Here we have investigated the cytotoxic action of an aqueous extract of Fagonia cretica, used widely as a herbal tea-based treatment for breast cancer. Methodology/Principal Findings - Using flow cytometric analysis of cells labeled with cyclin A, annexin V and propidium iodide, we describe a time and dose-dependent arrest of the cell cycle in G0/G1 phase of the cell cycle and apoptosis following extract treatment in MCF-7 (WT-p53) and MDA-MB-231 (mutant-p53) human breast cancer cell lines with a markedly reduced effect on primary human mammary epithelial cells. Analysis of p53 protein expression and of its downstream transcription targets, p21 and BAX, revealed a p53 associated growth arrest within 5 hours of extract treatment and apoptosis within 24 hours. DNA double strand breaks measured as ?-H2AX were detected early in both MCF-7 and MDA-MB-231 cells. However, loss of cell viability was only partly due to a p53-driven response; as MDA-MB-231 and p53-knockdown MCF-7 cells both underwent cell cycle arrest and death following extract treatment. p53-independent growth arrest and cytotoxicity following DNA damage has been previously ascribed to FOXO3a expression. Here, in MCF-7 and MDA-MB-231 cells, FOXO3a expression was increased significantly within 3 hours of extract treatment and FOXO3 siRNA reduced the extract-induced loss of cell viability in both cell lines. Conclusions/Significance - Our results demonstrate for the first time that an aqueous extract of Fagonia cretica can induce cell cycle arrest and apoptosis via p53-dependent and independent mechanisms, with activation of the DNA damage response. We also show that FOXO3a is required for activity in the absence of p53. Our findings indicate that Fagonia cretica aqueous extract contains potential anti-cancer agents acting either singly or in combination against breast cancer cell proliferation via DNA damage-induced FOXO3a and p53 expression.
Resumo:
The endothelium produces and responds to reactive oxygen and nitrogen species (RONS), providing important redox regulation to the cardiovascular system in physiology and disease. In no other situation are RONS more critical than in the response to tissue ischemia. Here, tissue healing requires growth factor-mediated angiogenesis that is in part dependent on low levels of RONS, which paradoxically must overcome the damaging effects of high levels of RONS generated as a result of ischemia. While generation of endothelial cell RONS in hypoxia/reoxygenation is acknowledged, the mechanism for their role in angiogenesis is still poorly understood. During ischemia, the major low molecular weight thiol glutathione (GSH) reacts with RONS and protein cysteines, producing GSH-protein adducts. Recent data indicate that GSH adducts on certain proteins are essential to growth factor responses in endothelial cells. Genetic deletion of the enzyme glutaredoxin-1, which selectively removes GSH protein adducts, improves, while its overexpression impairs, revascularization of the ischemic hindlimb of mice. Ischemia-induced GSH adducts on specific cysteine residues of several proteins, including p65 NFkB and the sarcoplasmic reticulum calcium ATPase-2 (SERCA2), appear to promote ischemic angiogenesis. Identifying the specific proteins in the redox response to ischemia has provided therapeutic opportunities to improve clinical outcomes of ischemia.
Resumo:
Loss of skeletal muscle is an important determinant of survival in patients with cancer-induced weight loss. The effect of the leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) on the reduction of body weight loss and protein degradation in the MAC16 model of cancer-induced weight loss has been compared with that of eicosapentaenoic acid (EPA), a recognized inhibitor of protein degradation. HMB was found to attenuate the development of weight loss at a dose greater than 0.125 g/kg accompanied by a small reduction in tumor growth rate. When EPA was used at a suboptimal dose level (0.6 g/kg) the combination with HMB seemed to enhance the anticachectic effect. Both treatments caused an increase in the wet weight of soleus muscle and a reduction in protein degradation, although there did not seem to be a synergistic effect of the combination. Proteasome activity, determined by the "chymotrypsin-like" enzyme activity, was attenuated by both HMB and EPA. Protein expression of the 20S alpha or beta subunits was reduced by at least 50%, as were the ATPase subunits MSS1 and p42 of the 19S proteasome regulatory subunit. This was accompanied by a reduction in the expression of E2(14k) ubiquitin-conjugating enzyme. The combination of EPA and HMB was at least as effective or more effective than either treatment alone. Attenuation of proteasome expression was reflected as a reduction in protein degradation in gastrocnemius muscle of cachectic mice treated with HMB. In addition, HMB produced a significant stimulation of protein synthesis in skeletal muscle. These results suggest that HMB preserves lean body mass and attenuates protein degradation through down-regulation of the increased expression of key regulatory components of the ubiquitin-proteasome proteolytic pathway, together with stimulation of protein synthesis.
Resumo:
Functionality of an open graded friction course (OGFC) depends on the high interconnected air voids or pores of the OGFC mixture. The authors' previous study indicated that the pores in the OGFC mixture were easily clogged by rutting deformation. Such a deformation-related clogging can cause a significant rutting-induced permeability loss in the OGFC mixture. The objective of this study was to control and reduce the rutting-induced permeability loss of the OGFC based on mixture design and layer thickness. Eight types of the OGFC mixtures with different air void contents, gradations, and nominal maximum aggregate sizes were fabricated in the laboratory. Wheel-tracking rutting tests were conducted on the OGFC slabs to simulate the deformation-related clogging. Permeability tests after different wheel load applications were performed on the rutted OGFC slabs using a falling head permeameter developed in the authors' previous study. The relationships between permeability loss and rutting depth as well as dynamic stability were developed based on the eight OGFC mixtures' test results. The thickness effects of the single-layer and the two-layer OGFC slabs were also discussed in terms of deformation-related clogging and the rutting-induced permeability loss. Results showed that the permeability coefficient decreases linearly with an increasing rutting depth of the OGFC mixtures. Rutting depth was recommended as a design index to control permeability loss of the OGFC mixture rather than the dynamic stability. Permeability loss due to deformation-related clogging can be effectively reduced by using a thicker single-layer OGFC or two-layer OGFC.
Resumo:
Current anti-angiogenic treatments involve the attenuation of signalling via the pro-angiogenic vascular endothelial growth factor/receptor (VEGF/VEGFR) axis. Stimulation of angiogenesis by VEGF requires the activation of the calcineurin/nuclear factor of activated T-cells (NFAT) signal transduction pathway which is inhibited by Plasma Membrane Calcium ATPase 4 (PMCA4), an endogenous calcium extrusion pump. However, PMCA4s role in calcineurin/NFAT-dependent angiogenesis is unknown. Using “gain of function” studies, we show here that adenoviral overexpression of PMCA4 in human umbilical vein endothelial cells (HUVEC) inhibited NFAT activity, decreased the expression of NFAT-dependent pro-angiogenic proteins (regulator of calcineurin 1.4 (RCAN1.4) and cyclooxygenase-2) and diminished in vitro cell migration and tube formation in response to VEGF-stimulation. Furthermore, in vivo blood vessel formation was attenuated in a matrigel plug assay by ectopic expression of PMCA4. Conversely, “loss of function” experiments by si-RNA-mediated knockdown of PMCA4 in HUVEC or isolation of mouse lung endothelial cells from PMCA4−/− mice showed increased VEGF-induced NFAT activity, RCAN1.4 expression, in vitro endothelial cell migration, tube formation and in vivo blood vessel formation. Additionally, in an in vivo pathological angiogenesis model of limb ischemia, the reperfusion of the ischemic limb of PMCA4−/− mice was augmented compared to wild-type. Disruption of the interaction between endogenous PMCA4 and calcineurin by adenoviral overexpression of the region of PMCA4 that interacts with calcineurin (residues 428–651) increased NFAT activity, RCAN1.4 protein expression and in vitro tube formation. These results identify PMCA4 as an inhibitor of VEGF-induced angiogenesis, highlighting its potential as a new therapeutic target for anti-angiogenic treatments.
Resumo:
Reactive oxygen species (ROS) are increased in ischemic tissues and necessary for revascularization; however, the mechanism remains unclear. Exposure of cysteine residues to ROS in the presence of glutathione (GSH) generates GSH-protein adducts that are specifically reversed by the cytosolic thioltransferase, glutaredoxin-1 (Glrx). Here, we show that a key angiogenic transcriptional factor hypoxia-inducible factor (HIF)-1α is stabilized by GSH adducts, and the genetic deletion of Glrx improves ischemic revascularization. In mouse muscle C2C12 cells, HIF-1α protein levels are increased by increasing GSH adducts with cell-permeable oxidized GSH (GSSG-ethyl ester) or 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanyl thiocarbonylamino) phenylthiocarbamoylsulfanyl] propionic acid (2-AAPA), an inhibitor of glutathione reductase. A biotin switch assay shows that GSSG-ester-induced HIF-1α contains reversibly modified thiols, and MS confirms GSH adducts on Cys520 (mouse Cys533). In addition, an HIF-1α Cys520 serine mutant is resistant to 2-AAPA–induced HIF-1α stabilization. Furthermore, Glrx overexpression prevents HIF-1α stabilization, whereas Glrx ablation by siRNA increases HIF-1α protein and expression of downstream angiogenic genes. Blood flow recovery after femoral artery ligation is significantly improved in Glrx KO mice, associated with increased levels of GSH-protein adducts, capillary density, vascular endothelial growth factor (VEGF)-A, and HIF-1α in the ischemic muscles. Therefore, Glrx ablation stabilizes HIF-1α by increasing GSH adducts on Cys520 promoting in vivo HIF-1α stabilization, VEGF-A production, and revascularization in the ischemic muscles
Resumo:
Ceramide (a sphingolipid) and reactive oxygen species are each partly responsible for intracellular signal transduction in response to a variety of agents. It has been reported that ceramide and reactive oxygen species are intimately linked and show reciprocal regulation [Liu, Andreieu-Abadie, Levade, Zhang, Obeid and Hannun (1998) J. Biol. Chem. 273, 11313-11320]. Utilizing synthetic, short-chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide formation or using stimulation of CD95 to induce ceramide formation, we found that the principal redox-altering property of ceramide is to lower the [peroxide]cyt (cytosolic peroxide concentration). Apoptosis of Jurkat T-cells, primary resting and phytohaemagglutinin-activated human peripheral blood T-lymphocytes was preceded by a loss in [peroxide]cyt, as measured by the peroxide-sensitive probe 2′,7′-dichlorofluorescein diacetate (also reflected in a lower rate of superoxide dismutase-inhibitable cytochrome c reduction), and this was not associated with a loss of membrane integrity. Where growth arrest of U937 monocytes was observed without a loss of membrane integrity, the decrease in [peroxide]cyt was of a lower magnitude when compared with that preceding the onset of apoptosis in T-cells. Furthermore, decreasing the cytosolic peroxide level in U937 monocytes before the application of synthetic ceramide by pretreatment with either of the antioxidants N-acetyl cysteine or glutathione conferred apoptosis. However, N-acetyl cysteine or glutathione did not affect the kinetics or magnitude of ceramide-induced apoptosis of Jurkat T-cells. Therefore the primary redox effect of cellular ceramide accumulation is to lower the [peroxide]cyt of both primary and immortalized cells, the magnitude of which dictates the cellular response.
Resumo:
Transglutaminase 2 (TG2) is a protein crosslinking enzyme with several additional biochemical functions. Loss of TG2 in vivo results in impaired phagocytosis of apoptotic cells and altered proinflammatory cytokine production by macrophages engulfing apoptotic cells leading to autoimmunity. It has been proposed that TG2 acts as an integrin ß(3) coreceptor in the engulfment process, while altered proinflammatory cytokine production is related to the lack of latent TGFß activation by TG2 null macrophages. Here we report that TG2 null macrophages respond to lipopolysaccharide treatment by elevated IL-6 and TNFa production. Though TGFß has been proposed to act as a feed back regulator of proinflammatory cytokine production in LPS-stimulated macrophages, this phenomenon is not related to the lack of active TGFß production. Instead, in the absence of TG2 integrin ß(3) maintains an elevated basal Src family kinase activity in macrophages, which leads to enhanced phosphorylation and degradation of the I?Ba. Low basal levels of I?Ba explain the enhanced sensitivity of TG2 null macrophages to signals that regulate NF-?B. Our data suggest that TG2 null macrophages bear a proinflammatory phenotype, which might contribute to the enhanced susceptibility of these mice to develop autoimmunity and atherosclerosis.
Resumo:
Loss of skeletal muscle in cancer cachexia has a negative effect on both morbidity and mortality. The role of nuclear factor-κB (NF-κB) in regulating muscle protein degradation and expression of the ubiquitin-proteasome proteolytic pathway in response to a tumour cachectic factor, proteolysis-inducing factor (PIF), has been studied by creating stable, transdominant-negative, muscle cell lines. Murine C2C12 myoblasts were transfected with plasmids with a CMV promoter that had mutations at the serine phosphorylation sites required for degradation of I-κBα, an NF-κB inhibitory protein, and allowed to differentiate into myotubes. Proteolysis-inducing factor induced degradation of I-κBα, nuclear accumulation of NF-κB and an increase in luciferase reporter gene activity in myotubes containing wild-type, but not mutant, I-κBα, proteins. Proteolysis-inducing factor also induced total protein degradation and loss of the myofibrillar protein myosin in myotubes containing wild-type, but not mutant, plasmids at the same concentrations as those causing activation of NF-κB. Proteolysis-inducing factor also induced increased expression of the ubiquitin-proteasome pathway, as determined by 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the β-subunits of the proteasome, protein expression of 20S α-subunits and the 19S subunits MSSI and p42, as well as the ubiquitin conjugating enzyme, E214k, in cells containing wild-type, but not mutant, I-κBα. The ability of mutant I-κBα to inhibit PIF-induced protein degradation, as well as expression of the ubiquitin-proteasome pathway, confirms that both of these responses depend on initiation of transcription by NF-κB. © 2005 Cancer Research UK.
Resumo:
In inflammatory diseases, release of oxidants leads to oxidative damage to biomolecules. HOCl (hypochlorous acid), released by the myeloperoxidase/H2O2/Cl- system, can cause formation of phospholipid chlorohydrins, or alpha-chloro-fatty aldehydes from plasmalogens. It can attack several amino acid residues in proteins, causing post-translational oxidative modifications of proteins, but the formation of 3-chlorotyrosine is one of the most stable markers of HOCl-induced damage. Soft-ionization MS has proved invaluable for detecting the occurrence of oxidative modifications to both phospholipids and proteins, and characterizing the products generated by HOCl-induced attack. For both phospholipids and proteins, the application of advanced mass spectrometric methods such as product or precursor ion scanning and neutral loss analysis can yield information both about the specific nature of the oxidative modification and the biomolecule modified. The ideal is to be able to apply these methods to complex biological or clinical samples, to determine the site-specific modifications of particular cellular components. This is important for understanding disease mechanisms and offers potential for development of novel biomarkers of inflammatory diseases. In the present paper, we review some of the progress that has been made towards this goal.
Resumo:
A transplantable colon adenocarcinoma of the mouse (MAC16) was utilized as a model of human cancer cachexia. The MAC16 tumour produced extensive weight loss in the host at small tumour burdens and without a reduction in either food or fluid intake. The weight loss was characterised by a decrease in both carcass fat and muscle mass which were directly proportional to the weight of the tumour. The weight loss has been correlated with the production of circulatory catabolic factors by the tumour, which degrade host muscle and adipose tissue in vitro. These factors were further characterised and have been shown to be distinct and separable by gel exclusion chromatography. The proteolytic factors (molecular weight > 150k daltons) were distinguishable from the lipolytic factors which appeared related with molecular weights of approximately 3.0, 1.5 and 0.7k daltons. Lipolytic factors of the same molecular weights were identified in other tumour models and in the body fluids of tumour-bearing animals and cancer patients. These factors were not present in healthy individuals or in patients with other weight-losing conditions. Various temperatures studied reversed the weight loss seen in the cachexia induced by the MAC16 adenocarcinoma in vivo. The effects of these treatments could be linked in vitro to the inhibition of the catabolic factors produced by the tumour. These results suggest that these factors may be responsible for the cachexia the tumour confers on its host. These factors may be useful in the understanding and therapy of cancer cachexia.