6 resultados para IRRADIATED POLYAMIDE-1010

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ta and Ta-1% W are being considered to be used as target clad materials in the LANSCE proton beam line for the material test station (MTS). To investigate the embrittlement of these materials due to oxygen contamination and proton irradiation, Ta and Ta-1 wt% W (as received and with ~400 ppm O) were exposed to a 3.5 MeV proton beam at the ion beam materials laboratory at LANL. After irradiating the samples in the proton beam, nanoindentation was performed in cross-section to investigate the hardness increase of the materials due to irradiation. The nanoindentation showed that the hardness increase due to irradiation is between 9% and 20% depending on the material. The results show good agreement with mechanical testing results on tantalum and Ta-1 wt% W after high energy proton irradiation to doses up to 23 dpa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the gradual changes of the microstructure of two blends of high-density polyethylene (HDPE) and polyamide 6 (PA6) at opposite composition filled with increasing amounts of an organomodified clay. The filler locates preferentially inside the polyamide phase, bringing about radical alterations in the micron-scale arrangement of the polymer phases. When the host polyamide represents the major constituent, a sudden reduction of the average sizes of the polyethylene droplets was observed upon addition of even low amounts of organoclay. A morphology refinement was also noticed at low filler contents when the particles distributes inside the minor phase. In this case, however, keep increasing the organoclay content eventually results in a high degree of PA6 phase continuity. Rheological analyses reveal that the filler loading at which the polyamide assembles in a continuous network corresponds to the critical threshold for its rheological transition from a liquid- to a gel-like behaviour, which is indicative of the structuring of the filler inside the host PA6. On the basis of this finding, a schematic mechanism is proposed in which the role of the filler in driving the space arrangement of the polymer phases is discussed. Finally, we show that the synergism between the reinforcing action of the filler and its ability to affect the blend microstructure can be exploited in order to enhance relevant technological properties of the materials, such as their high temperature structural integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interface effects on ion-irradiation tolerance properties are investigated in nanolayered TiN/AlN films with individual layer thickness varied from 5 nm to 50 nm, prepared by pulsed laser deposition. Evolution of the microstructure and hardness of the multilayer films are examined on the specimens before and after He ion-implantation to a fluence of 4 × 10 m at 50 keV. The suppression of amorphization in AlN layers and the reduction of radiation-induced softening are observed in all nanolayer films. A clear size-dependent radiation tolerance characteristic is observed in the nanolayer films, i.e., the samples with the optimum layer thickness from 10 nm to 20 nm show the best ion irradiation tolerance properties, and a critical layer thickness of more than 5 nm is necessary to prevent severe intermixing. This study suggests that both the interface characteristics and the critical length scale (layer thickness) contribute to the reduction of the radiation-induced damages in nitride-based ceramic materials. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4He2+ ions from a tandem accelerator to doses between 1 × 106 and 5 × 1010 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C60+ source, was employed to probe chemical changes as a function of a dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of a particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing a particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of a dose. The data show that PTFE nominally retains its innate chemical structure and morphology at a doses <109 Rad. At α doses ≥109 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At  α doses >1010 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of a particle irradiation and show morphological roughening of the sample with increased a dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of a particles. RGA confirms the supposition that the outcome of chemical degradation in the PTFE matrix with continuing irradiation is evolution of volatile species resulting in morphological roughening and mass loss. Finally, we reveal and discuss relationships between chemical structure and mechanical properties such as hardness and elastic modulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ε-caprolactam is a monomer of high value. Therefore, the chemical reutilization of polyamide 6 containing carpets for ε-caprolactam recovery offers some economic benefit and is performed on a technical scale with the help of the Zimmer-process. By this process polyamide 6 is depolymerized with steam and phosphoric acid. An alternative to this process is the thermal depolymerization - catalyzed or non-catalyzed. To investigate this alternative in more detail, the formal kinetic parameters of (i) the thermal depolymerization of polyamide 6, (ii) the thermal depolymerization in presence of sodium/potassium hydoxide, and (iii) the thermal depolymerization in presence of phosphoric acid are determined in this work. Based on the kinetics of the catalyzed or non-catalyzed depolymerization a stepwise pyrolysis procedure is designed by which the formation of ε-caprolactam from polyamide 6 can be separated from the formation of other pyrolysis products. © 2001 Elsevier Science B.V.