6 resultados para ION-IMPLANTATION

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that moderate doses of radiation can lead to increased fracture toughness in ceramics. An experimental investigation was conducted to determine the effects of ion implantation on fracture toughness in silicon. Specimens implanted with Ne showed increased fracture toughness, over the entire range of implantations tested. Using ions of various energies to better distribute implantation damage further increased the fracture toughness even though the region of amorphous damage was slightly decreased. The implantation damage accumulated in a predictable manner so that fracture toughness could be optimized.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of low energy nitrogen molecular ion beam bombardment on metals and compound semiconductors has been studied, with the aim to investigate at the effects of ion and target properties. For this purpose, nitrogen ion implantation in aluminium, iron, copper, gold, GaAs and AIGaAs is studied using XPS and Angle Resolve XPS. A series of experimental studies on N+2 bombardment induced compositional changes, especially the amount of nitrogen retained in the target, were accomplished. Both monoenergetic implantation and non-monoenergetic ion implantation were investigated, using the VG Scientific ESCALAB 200D system and a d. c. plasma cell, respectively. When the samples, with the exception of gold, are exposed to air, native oxide layers are formed on the surfaces. In the case of monoenergetic implantation, the surfaces were cleaned using Ar+ beam bombardment prior to implantation. The materials were then bombarded with N2+ beam and eight sets of successful experiments were performed on each sample, using a rastered N2+ ion beam of energy of 2, 3, 4 and 5 keV with current densities of 1 μA/cm2 and 5 μA/cm22 for each energy. The bombarded samples were examined by ARXPS. After each complete implantation, XPS depth profiles were created using Ar+ beam at energy 2 ke V and current density 2 μA/cm2 . As the current density was chosen as one of the parameters, accurate determination of current density was very important. In the case of glow discharge, two sets of successful experiments were performed in each case, by exposing the samples to nitrogen plasma for the two conditions: at low pressure and high voltage and high pressure and low voltage. These samples were then examined by ARXPS. On the theoretical side, the major problem was prediction of the number of ions of an element that can be implanted in a given matrix. Although the programme is essentially on experimental study, but an attempt is being made to understand the current theoretical models, such as SATVAL, SUSPRE and TRIM. The experimental results were compared with theoretical predictions, in order to gain a better understanding of the mechanisms responsible. From the experimental results, considering possible experimental uncertainties, there is no evidence of significant variation in nitrogen saturation concentration with ion energy or ion current density in the range of 2-5 ke V, however, the retention characteristics of implantant seem to strongly depend on the chemical reactivity between ion species and target material. The experimental data suggests the presence of at least one thermal process. The discrepancy between the theoretical and experimental results could be the inability of the codes to account for molecular ion impact and thermal processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ion implantation modifies the surface composition and properties of materials by bombardment with high energy ions. The low temperature of the process ensures the avoidance of distortion and degradation of the surface or bulk mechanical properties of components. In the present work nitrogen ion implantation at 90 keV and doses above 1017 ions/cm2 has been carried out on AISI M2, D2 and 420 steels and engineering coatings such as hard chromium, electroless Ni-P and a brush plated Co-W alloy. Evaluation of wear and frictional properties of these materials was performed with a lubricated Falex wear test at high loads up to 900 N and a dry pin-on-disc apparatus at loads up to 40 N. It was found that nitrogen implantation reduced the wear of AISI 420 stainless steel by a factor of 2.5 under high load lubricated conditions and by a factor of 5.5 in low load dry testing. Lower but significant reductions in wear were achieved for AISI M2 and D2 steels. Wear resistance of coating materials was improved by up to 4 times in lubricated wear of hard Cr coatings implanted at the optimum dose but lower improvements were obtained for the Co-W alloy coating. However, hardened electroless Ni-P coatings showed no enhancement in wear properties. The benefits obtained in wear behaviour for the above materials were generally accompanied by a significant decrease in the running-in friction. Nitrogen implantation hardened the surface of steels and Cr and Co-W coatings. An ultra-microhardness technique showed that the true hardness of implanted layers was greater than the values obtained by conventional micro-hardness methods, which often result in penetration below the implanted depth. Scanning electron microscopy revealed that implantation reduced the ploughing effect during wear and a change in wear mechanism from an abrasive-adhesive type to a mild oxidative mode was evident. Retention of nitrogen after implantation was studied by Nuclear Reaction Analysis and Auger Electron Spectroscopy. It was shown that maximum nitrogen retention occurs in hard Cr coatings and AISI 420 stainless steel, which explains the improvements obtained in wear resistance and hardness. X-ray photoelectron spectroscopy on these materials revealed that nitrogen is almost entirely bound to Cr, forming chromium nitrides. It was concluded that nitrogen implantation at 90 keV and doses above 3x1017 ions/cm2 produced the most significant improvements in mechanical properties in materials containing nitride formers by precipitation strengthening, improving the load bearing capacity of the surface and changing the wear mechanism from adhesive-abrasive to oxidative.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We demonstrate that a controllable cracking can be realized in Si with a buried strain layer when hydrogen is introduced using traditional H-ion implantation techniques. However, H stimulated cracking is dependent on H projected ranges; cracking occurs along a Si0.8Ge0.2 strain layer only if the H projected range is shallower than the depth of the strained layer. The absence of cracking for H ranges deeper than the strain layer is attributed to ion-irradiation induced strain relaxation, which is confirmed by Rutherford-backscattering-spectrometry channeling angular scans. The study reveals the importance of strain in initializing continuous cracking with extremely low H concentrations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interface effects on ion-irradiation tolerance properties are investigated in nanolayered TiN/AlN films with individual layer thickness varied from 5 nm to 50 nm, prepared by pulsed laser deposition. Evolution of the microstructure and hardness of the multilayer films are examined on the specimens before and after He ion-implantation to a fluence of 4 × 10 m at 50 keV. The suppression of amorphization in AlN layers and the reduction of radiation-induced softening are observed in all nanolayer films. A clear size-dependent radiation tolerance characteristic is observed in the nanolayer films, i.e., the samples with the optimum layer thickness from 10 nm to 20 nm show the best ion irradiation tolerance properties, and a critical layer thickness of more than 5 nm is necessary to prevent severe intermixing. This study suggests that both the interface characteristics and the critical length scale (layer thickness) contribute to the reduction of the radiation-induced damages in nitride-based ceramic materials. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline zirconium nitride (ZrN) samples were irradiated with He +, Kr ++, and Xe ++ ions to high (>1·10 16 ions/cm 2) fluences at ∼100 K. Following ion irradiation, transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the microstructure and crystal structure of the post-irradiated material. For ion doses equivalent to approximately 200 displacements per atom (dpa), ZrN was found to resist any amorphization transformation, based on TEM observations. At very high displacement damage doses, GIXRD measurements revealed tetragonal splitting of some of the diffraction maxima (maxima which are associated with cubic ZrN prior to irradiation). In addition to TEM and GIXRD, mechanical property changes were characterized using nanoindentation. Nanoindentation revealed no change in elastic modulus of ZrN with increasing ion dose, while the hardness of the irradiated ZrN was found to increase significantly with ion dose. Finally, He + ion implanted ZrN samples were annealed to examine He gas retention properties of ZrN as a function of annealing temperature. He gas release was measured using a residual gas analysis (RGA) spectrometer. RGA measurements were performed on He-implanted ZrN samples and on ZrN samples that had also been irradiated with Xe ++ ions, in order to introduce high levels of displacive radiation damage into the matrix. He evolution studies revealed that ZrN samples with high levels of displacement damage due to Xe implantation, show a lower temperature threshold for He release than do pristine ZrN samples.