6 resultados para INTRALESIONAL VERAPAMIL

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The timeline imposed by recent worldwide chemical legislation is not amenable to conventional in vivo toxicity testing, requiring the development of rapid, economical in vitro screening strategies which have acceptable predictive capacities. When acquiring regulatory neurotoxicity data, distinction on whether a toxic agent affects neurons and/or astrocytes is essential. This study evaluated neurofilament (NF) and glial fibrillary acidic protein (GFAP) directed single-cell (S-C) ELISA and flow cytometry as methods for distinguishing cell-specific cytoskeletal responses, using the established human NT2 neuronal/astrocytic (NT2.N/A) co-culture model and a range of neurotoxic (acrylamide, atropine, caffeine, chloroquine, nicotine) and non-neurotoxic (chloramphenicol, rifampicin, verapamil) test chemicals. NF and GFAP directed flow cytometry was able to identify several of the test chemicals as being specifically neurotoxic (chloroquine, nicotine) or astrocytoxic (atropine, chloramphenicol) via quantification of cell death in the NT2.N/A model at cytotoxic concentrations using the resazurin cytotoxicity assay. Those neurotoxicants with low associated cytotoxicity are the most significant in terms of potential hazard to the human nervous system. The NF and GFAP directed S-C ELISA data predominantly demonstrated the known neurotoxicants only to affect the neuronal and/or astrocytic cytoskeleton in the NT2.N/A cell model at concentrations below those affecting cell viability. This report concluded that NF and GFAP directed S-C ELISA and flow cytometric methods may prove to be valuable additions to an in vitro screening strategy for differentiating cytotoxicity from specific neuronal and/or astrocytic toxicity. Further work using the NT2.N/A model and a broader array of toxicants is appropriate in order to confirm the applicability of these methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work present in this thesis was aimed at assessing the efficacy of lithium in the acute treatment of mania and for the prophylaxis of bipolar disorder, and investigating the value of plasma haloperidol concentration for predicting response to treatment in schizophrenia. The pharmacogenetics of psychotropic drugs is critically appraised to provide insights into interindividual variability in response to pharmacotherapy, In clinical trials of acute mania, a number of measures have been used to assess the severity of illness and its response to treatment. Rating instruments need to be validated in order for a clinical study to provide reliable and meaningful estimates of treatment effects, Eight symptom-rating scales were identified and critically assessed, The Mania Rating Scale (MRS) was the most commonly used for assessing treatment response, The advantage of the MRS is that there is a relatively extensive database of studies based on it and this will no doubt ensure that it remains a gold standard for the foreseeable future. Other useful rating scales are available for measuring mania but further cross-validation and validation against clinically meaningful global changes are required. A total of 658 patients from 12 trials were included in an evaluation of the efficacy of lithium in the treatment of acute mania. Treatment periods ranged from 3 to 4 weeks. Efficacy was estimated using (i) the differences in the reduction in mania severity scores, and (ii) the ratio and difference in improvement response rates. The response rate ratio for lithium against placebo was 1.95 (95% CI 1.17 to 3.23). The mean number needed to treat was 5 (95% CI 3 to 20). Patients were twice as likely to obtain remission with lithium than with chlorpromazine (rate ratio = 1.96, 95% CI 1.02 to 3.77). The mean number needed to treat (NNT) was 4 (95% CI 3 to 9). Neither carbamazepine nor valproate was more effective than lithium. The response rate ratios were 1.01 (95% CI 0.54 to 1.88) for lithium compared to carbarnazepine and 1.22 (95% CI 0.91 to 1.64) for lithium against valproate. Haloperidol was no better than lithium on the basis of improvement based on assessment of global severity. The differences in effects between lithium and risperidone were -2.79 (95% CI -4.22 to -1.36) in favour of risperidone with respect to symptom severity improvement and -0.76 (95% CI -1.11 to -0,41) on the basis of reduction in global severity of disease. Symptom and global severity was at least as well controlIed with lithium as with verapamil. Lithium caused more side-effects than placebo and verapamil, but no more than carbamazepine or valproate. A total of 554 patients from 13 trials were included in the statistical analysis of lithium's efficacy in the prophylaxis of bipolar disorder. The mean follow-up period was 5-34 months. The relapse risk ratio for lithium versus placebo was 0.47 (95% CI 0.26 to 0.86) and the NNT was 3 (95% CI 2 to 7). The relapse risk ratio for lithium versus imipramine was 0.62 (95% CI 0.46 to 0.84) and the NNT was 4 (951% Cl 3 to 7), The combination of lithium and imipramine was no more effective than lithium alone. The risk of relapse was greater with lithium alone than with the lithium-divalproate combination. A risk difference of 0.60 (95% CI 0.21 to 0.99) and an NNT of 2 (95% CI 1 to 5) were obtained. Lithium was as effective as carbamazepine. Based on individual data concerning plasma haloperidol concentration and percent improvement in psychotic symptoms, our results suggest an acceptable concentration range of 11.20-30.30 ng/mL A minimum of 2 weeks should be allowed before evaluating therapeutic response. Monitoring of drug plasma levels seems not to be necessary unless behavioural toxicity or noncompliance is suspected. Pharmacokinetics and pharmacodynamics, which are mainly determined by genetic factors, contribute to interindividual and interethnic variations in clinical response to drugs. These variations are primarily due to differences in drug metabolism. Variability in pharmacokinetics of a number of drugs is associated with oxidation polymorphism. Debrisoquine/sparteine hydroxylase (CYP2D6) and the S-mephenytoin hydroxylase (CYP2C19) are polymorphic P450 enzymes with particular importance in psychopharmacotherapy. The enzymes are responsible for the metabolism of many commonly used antipsychotic and antidepressant drugs. The incidence of poor metabolisers of debrisoquine and S-mephenytoin varies widely among populations. Ethnic variations in polymorphic isoenzymes may, at least in part, explain ethnic differences in response to pharmacotherapy of antipsychotics and antidepressant drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transport of a group of quinolone antibiotics across the human intestinal model, Caco-2 cells, was investigated. It was found that the transport of the quinolones generally correlated with the lipophilicity of the compounds, indicating the passive diffusional transcellular processes were involved. However, it was observed that the transport in both directions apical-to-basolateral and basolateral-to-apical was not equivalent, and polarised transport occurred. For all the quinolones studied except, BMS-284756-01, it was found that the basolateral-to-apical transport was significantly greater than the apical-to-basolateral transport. This finding suggested that the quinolones underwent a process of active secretion. The pKas and logPs for the quinolones were determined using potentiometric titrations. The measured logP values were compared with those determined using theoretical methods. The theoretical methods for calculating logP including the Moriguchi method correlated poorly with the measured logP values. Further investigations revealed that there may be an active transporter involved in the apical-to-basolateral transport of quinolones as well. This mechanism was sensitive to competing quinolones, but, it was unaffected by the metabolic inhibitor combination of sodium azide (15mM) with 2-deoxy-D-glucose (50mM). The basolateral-to-apical transport of quinolones was found to be sensitive to inhibition by a number of different inhibitors. The metabolic inhibitors, sodium azide (15mM) with 2-deoxy-D-glucose (50mM) and 2,4-dinitrophenol (1mM), were able to reduce the basolateral-to-apical transport of quinolones. A reduction in temperature from 37°C to 2°C caused an 80-fold decrease in the transport of gatifloxacin in both directions, however, this effect was not sufficient to abolish the greater basolateral-to-apical secretion. As with apical-to-basolateral transport, it was found that quinolones competed with gatifloxacin for basolateral-to-apical transport, both ofloxacin (100μM) and norfloxacin (100μM) significantly (P<0.003) decreased the basolateral-to-apical transport of gatifloxacin; however, ciprofloxacin (100μM and 300μM) had no effect. A number of inhibitors of various transport systems were also investigated. It was found that the anion transport inhibitor, probenecid (100 μM) had a significant inhibitory effect on the basolateral-to-apical transport of ciprofloxacin (P=0.039), while the cation transport inhibitor cimetidine (100μM and 500μM) had no effect. The organic anion exchange inhibitor 4,4'diisothiocyanostilbene-2-2' -disulphonic acid DIDS (400μM) also had a significant inhibitory effect (P=O.O 13). The PgP inhibitor and anion exchange inhibitor verapamil (400Mμ) was able to completely abolish the basolateral-to-apical secretion of gatifloxacin and bring it into line with the apical-to-basolateral flux. In conclusion, the apical-to-basolateral and basolateral-toapical transport of quinolones involved an active component. The basolateral-to-apical secretion was abolished by a verapamil (400μM), a bisubstrate for PgP and the anion transporter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contractile response of rat aorta, mesenteric artery and femoral artery to noradrenaline and potassium chloride were studied under standard and hypoxic conditions and the effect of hypoxia was dependent upon both the vessel and the stimulant. Hypoxia had less effect upon contractions to potassium chloride than those to noradrenaline. The effects of hypoxia on potassium chloride induced responses in different vessels were relatively similar although responses to noradrenaline were vessel dependent. Noradrenaline induced contractions of the femoral artery were most affected by hypoxia whilst those of the mesenteric artery were least affected. Hypoxia changed the well maintained response of the femoral artery to noradrenaline to a transient form; this effect of hypoxia was not evident in the aorta or the mesenteric artery. The aorta and mesenteric artery contracted in calcium free EGTA PSS suggesting that these vessels displayed a release component. Hypoxia reduced the magnitude of this component. The effects of verapamil on noradrenaline and potassium chloride induced responses were investigated and were found to be different to those of hypoxia. Verapamil exerted a greater effect on contractions to potassium chloride than on those to noradrenaline. The effects of hypoxia on 45calcium flux were also vessel dependent. In the mesenteric and femoral arteries hypoxia increased basal 45calcium accumulation. However, the magnitude of noradrenaline stimulated 45calcium accumulation was reduced in the femoral artery and aorta but was unchanged in the mesenteric artery. The effects of hypoxia on 45calcium accumulation were similar to verapamil only in the aorta. The results provide evidence that the effects of hypoxia may arise from alterations in calcium mobilisation processes and that differences between vessels in these processes accounts for the heterogeneity between vessels in their response to hypoxia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. S-adenosyl-L-methionine (SAMe) had no effect on cytochrome C reduction by superoxide generated from xanthine oxidase except at high concentrations. This was due to direct inhibition of the enzyme. 2. SAMe inhibited the neutrophil respiratory burst , measured by luminol enhanced chemiluminescence, to FMLP and zymosan A but not to PMA. 3. Adenosine and methylthioadenosine (MTA) inhibited the respiratory burst elicited by FMLP. 4. SAMe inhibited the phagocytosis of latex particles by neutrophils at high concentrations but methionine and S-adenosyl L-homocysteine had no effect. 5. Treatment with SAMe had no effect on cell infiltration or PGE2 production in 6-day air pouches. 6. Treatment with SAMe at the optimum dose of 50mg/kg inhibited the early phases of carrageenan induced rat hind paw inflammation but had a lesser effect on the secondary response. The antiinflammatory effect was sustained after inhibiton of polyamine synthesis. 7. SAMe increased liver putrescine levels in the presence and absence of inflammation Spermidine levels were increased in the presence of inflammation but spermine levels were unaffected by any of the treatments. 8. MT A and adenosine increased liver putrescine and spermidine levels 9. Treatment with SAMe had no effect on the polyamine status of blood. lO.Treatment with SAMe had no effect on the levels of glutathione in liver or blood. 11.SAMe and MTA inhibited histamine and platelet-activating factor (PAF) induced hind paw inflammation but had no effect on inflammation induced by dextran, zymosan, compound 48/80, 5-hydroxytryptamine, arachidonic acid or glucose oxidase. MTA was more effective than SAMe. 12. PAP-induced rat hind paw inflammation was inhibited by isoprenaline and verapamil. Combinations of these drugs with SAMe or MT A had no further enhancement of effect. 13. Incubation of rat PMNLs with [14c ] SAMe increased the intracellular levels of S-adenosyl-L-homocysteine in a dose dependent manner, but had no effect on the intracellular levels of SAMe, adenosine or MT A. 14. Pharmacokinetic studies of plasma SAMe following a single dose of the drug (50mg/kg) i.p. demonstrated that SAMe is rapidly absorbed and metabolised

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent polytopic membrane protein that transports many anticancer drugs and organic anions. Its transport mechanism is multifaceted, especially with respect to the participation of GSH. For example, vincristine is cotransported with GSH, estrone sulfate transport is stimulated by GSH, or MRP1 can transport GSH alone, and this can be stimulated by compounds such as verapamil or apigenin. Thus, the interactions between GSH and MRP1 are mechanistically complex. To examine the similarities and differences among the various GSH-associated mechanisms of MRP1 transport, we have measured first the effect of GSH and several GSH-associated substrates/modulators on the binding and hydrolysis of ATP by MRP1 using 8-azidoadenosine-5'-[(32)P]-triphosphate ([(32)P]azidoATP) analogs, and second the initial binding of GSH and GSH-associated substrates/modulators to MRP1. We observed that GSH or its nonreducing derivative S-methylGSH (S-mGSH), but none of the GSH-associated substrate/modulators, caused a significant increase in [gamma-(32)P]azidoATP labeling of MRP1. Moreover, GSH and S-mGSH decreased levels of orthovanadate-induced trapping of [alpha-(32)P]azidoADP. [alpha-(32)P]azidoADP.Vi trapping was also decreased by estone sulfate, whereas vincristine, verapamil, and apigenin had no apparent effects on nucleotide interactions with MRP1. Furthermore, estrone sulfate and S-mGSH enhanced the effect of each other 15- and 10-fold, respectively. Second, although GSH binding increased the apparent affinity of MRP1 for all GSH-associated substrates/modulators tested, only estrone sulfate had a reciprocal effect on the apparent affinity of MRP1 for GSH. Overall, these results indicate significant mechanistic differences between MRP1-mediated transport of GSH and the ability of GSH to modulate MRP1 transport.