12 resultados para INTERSTITIAL FLUID PRESSURE
em Aston University Research Archive
Resumo:
This paper presents and demonstrates a method for using magnetic resonance imaging to measure local pressure of a fluid saturating a porous medium. The method is tested both in a static system of packed silica gel and in saturated sintered glass cylinders experiencing fluid flow. The fluid used contains 3% gas in the form of 3-μm average diameter gas filled 1,2-distearoyl-sn-glycero-3-phosphocholine (C18:0, MW: 790.16) liposomes suspended in 5% glycerol and 0.5% Methyl cellulose with water. Preliminary studies at 2.35 T demonstrate relative magnetic resonance signal changes of 20% per bar in bulk fluid for an echo time TE=40 ms, and 6-10% in consolidated porous media for TE=10 ms, over the range 0.8-1.8 bar for a spatial resolution of 0.1 mm3 and a temporal resolution of 30 s. The stability of this solution with relation to applied pressure and methods for improving sensitivity are discussed. © 2007 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to prepare gas-filled lipid-coated microbubbles as potential MRI contrast agents for imaging of fluid pressure. Air-filled microbubbles were produced with phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in the presence or absence of cholesterol and/or polyethylene-glycol distearate (PEG-distearate). Microbubbles were also prepared containing a fluorinated phospholipid, perfluoroalkylated glycerol-phosphatidylcholine, F-GPC shells encompassing perfluorohexane-saturated nitrogen gas. These microbubbles were evaluated in terms of physico-chemical characteristics such as size and stability. In parallel to these studies, DSPC microbubbles were also formulated containing nitrogen (N2) gas and compared to air-filled microbubbles. By preventing advection, signal drifts were used to assess their stability. DSPC microbubbles were found to have a drift of 20% signal change per bar of applied pressure in contrast to the F-GPC microbubbles which are considerably more stable with a lower drift of 5% signal change per bar of applied pressure. By increasing the pressure of the system and monitoring the MR signal intensity, the point at which the majority of the microbubbles have been damaged was determined. For the DSPC microbubbles this occurs at 1.3 bar whilst the F-GPC microbubbles withstand pressures up to 2.6 bar. For the comparison between air-filled and N2-filled microbubbles, the MRI sensitivity is assessed by cycling the pressure of the system and monitoring the MR signal intensity. It was found that the sensitivity exhibited by the N2-filled microbubbles remained constant, whilst the air-filled microbubbles demonstrated a continuous drop in sensitivity due to continuous bubble damage.
Resumo:
MRI of fluids containing lipid coated microbubbles has been shown to be an effective toot for measuring the local fluid pressure. However, the intrinsically buoyant nature of these microbubbles precludes lengthy measurements due to their vertical migration under gravity and pressure-induced coalescence. A novel preparation is presented which is shown to minimize both these effects for at least 25 min. By using a 2% polysaccharide gel base with a small concentration of glycerol and 1,2-distearoyl-sn-glycero-3-phosphocholine coated gas microbubbles, MR measurements are made for pressures between 0.95 and 1.44 bar. The signal drifts due to migration and amalgamation are shown to be minimized for such an experiment whilst yielding very high NMR sensitivities up to 38% signal change per bar.
Resumo:
Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.
Resumo:
In the bulge test, a sheet metal specimen is clamped over a circular hole in a die and formed into a bulge by the hydraulic pressure on one side of the specirnen. As the unsupported part of the specimen is deformed in this way, its area is increased, in other words, the material is generally stretched and its thickness generally decreased. The stresses causing this stretching action are the membrane stresses in the shell generated by the hydraulic pressure, in the same way as the rubber in a toy balloon is stretched by the membrane stresses caused by the air inside it. The bulge test is a widely used sheet metal test, to determine the "formability" of sheet materials. Research on this forming process (2)-(15)* has hitherto been almost exclusively confined to predicting the behaviour of the bulged specimen through the constitutive equations (stresses and strains in relation to displacements and shapes) and empirical work hardening characteristics of the material as determined in the tension test. In the present study the approach is reversed; the stresses and strains in the specimen are measured and determined from the geometry of the deformed shell. Thus, the bulge test can be used for determining the stress-strain relationship in the material under actual conditions in sheet metal forming processes. When sheet materials are formed by fluid pressure, the work-piece assumes an approximately spherical shape, The exact nature and magnitude of the deviation from the perfect sphere can be defined and measured by an index called prolateness. The distribution of prolateness throughout the workpiece at any particular stage of the forming process is of fundamental significance, because it determines the variation of the stress ratio on which the mode of deformation depends. It is found. that, before the process becomes unstable in sheet metal, the workpiece is exactly spherical only at the pole and at an annular ring. Between the pole and this annular ring the workpiece is more pointed than a sphere, and outside this ring, it is flatter than a sphere. In the forming of sheet materials, the stresses and hence the incremental strains, are closely related to the curvatures of the workpiece. This relationship between geometry and state of stress can be formulated quantitatively through prolateness. The determination of the magnitudes of prolateness, however, requires special techniques. The success of the experimental work is due to the technique of measuring the profile inclination of the meridional section very accurately. A travelling microscope, workshop protractor and surface plate are used for measurements of circumferential and meridional tangential strains. The curvatures can be calculated from geometry. If, however, the shape of the workpiece is expressed in terms of the current radial (r) and axial ( L) coordinates, it is very difficult to calculate the curvatures within an adequate degree of accuracy, owing to the double differentiation involved. In this project, a first differentiation is, in effect, by-passed by measuring the profile inclination directly and the second differentiation is performed in a round-about way, as explained in later chapters. The variations of the stresses in the workpiece thus observed have not, to the knowledge of the author, been reported experimentally. The static strength of shells to withstand fluid pressure and their buckling strength under concentrated loads, both depend on the distribution of the thickness. Thickness distribution can be controlled to a limited extent by changing the work hardening characteristics of the work material and by imposing constraints. A technique is provided in this thesis for determining accurately the stress distribution, on which the strains associated with thinning depend. Whether a problem of controlled thickness distribution is tackled by theory, or by experiments, or by both combined, the analysis in this thesis supplies the theoretical framework and some useful experimental techniques for the research applied to particular problems. The improvement of formability by allowing draw-in can also be analysed with the same theoretical and experimental techniques. Results on stress-strain relationships are usually represented by single stress-strain curves plotted either between one stress and one strain (as in the tension or compression tests) or between the effective stress and effective strain, as in tests on tubular specimens under combined tension, torsion and internal pressure. In this study, the triaxial stresses and strains are plotted simultaneously in triangular coordinates. Thus, both stress and strain are represented by vectors and the relationship between them by the relationship between two vector functions. From the results so obtained, conclusions are drawn on both the behaviour and the properties of the material in the bulge test. The stress ratios are generally equal to the strain-rate ratios (stress vectors collinear with incremental strain vectors) and the work-hardening characteristics, which apply only to the particular strain paths are deduced. Plastic instability of the material is generally considered to have been reached when the oil pressure has attained its maximum value so that further deformation occurs under a constant or lower pressure. It is found that the instability regime of deformation has already occurred long before the maximum pressure is attained. Thus, a new concept of instability is proposed, and for this criterion, instability can occur for any type of pressure growth curves.
Resumo:
Intramuscular injection of naked plasmid DNA is known (1-3) to elicit humoral and cell-mediated immune responses against the encoded antigen. It is thought (2,3) that immunity follows DNA uptake by muscle cells, leading to the expression and extracellular release of the antigen which is then taken up by antigen presenting cells (APC). In addition, it is feasible that some of the injected DNA is taken up directly by APC. Disadvantages (1-3) of naked DNA vaccination include: uptake of DNA by only a minor fraction of muscle cells, exposure of DNA to deoxyribonuclease in the interstitial fluid thus necessitating the use of relatively large quantities of DNA, and, in some cases, injection into regenerating muscle in order to enhance immunity. We have recently proposed (1,4) that DNA immunization via liposomes (phospholipid vesicles) could circumvent the need of muscle involvement and instead facilitate (5) uptake of DNA by APC infiltrating the site of injection or in the lymphatics, at the same time protecting DNA from nuclease attack (6). Moreover, transfection of APC with liposomal DNA could be promoted by the judicial choice of vesicle surface charge, size and lipid composition, or by the co-entrapment, together with DNA, of plasmids expressing appropriate cytokines (e.g., interleukin 2), or immunostimulatory sequences.
Magneto-vibratory separation of glass and bronze granular mixtures immersed in a paramagnetic liquid
Resumo:
A fluid-immersed granular mixture may spontaneously separate when subjected to vertical vibration, separation occurring when the ratio of particle inertia to fluid drag is sufficiently different between the component species of the mixture. Here, we describe how fluid-driven separation is influenced by magneto-Archimedes buoyancy, the additional buoyancy force experienced by a body immersed in a paramagnetic fluid when a strong inhomogeneous magnetic field is applied. In our experiments glass and bronze mixtures immersed in paramagnetic aqueous solutions of MnCl2 have been subjected to sinusoidal vertical vibration. In the absence of a magnetic field the separation is similar to that observed when the interstitial fluid is water. However, at modest applied magnetic fields, magneto-Archimedes buoyancy may balance the inertia/fluid-drag separation mechanism, or it may dominate the separation process. We identify the vibratory and magnetic conditions for four granular configurations, each having distinctive granular convection. Abrupt transitions between these states occur at well-defined values of the magnetic and vibrational parameters. In order to gain insight into the dynamics of the separation process we use computer simulations based on solutions of the Navier-Stokes' equations. The simulations reproduce the experimental results revealing the important role of convection and gap formation in the stability of the different states.
Resumo:
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.
Resumo:
Non-linear solutions and studies of their stability are presented for flows in a homogeneously heated fluid layer under the influence of a constant pressure gradient or when the mass flux across any lateral cross-section of the channel is required to vanish. The critical Grashof number is determined by a linear stability analysis of the basic state which depends only on the z-coordinate perpendicular to the boundary. Bifurcating longitudinal rolls as well as secondary solutions depending on the streamwise x-coordinate are investigated and their amplitudes are determined as functions of the supercritical Grashof number for various Prandtl numbers and angles of inclination of the layer. Solutions that emerge from a Hopf bifurcation assume the form of propagating waves and can thus be considered as steady flows relative to an appropriately moving frame of reference. The stability of these solutions with respect to three-dimensional disturbances is also analyzed in order to identify possible bifurcation points for evolving tertiary flows.
Resumo:
This work presents pressure distributions and fluid flow patterns on the shellside of a cylindrical shell-and-tube heat exchanger. The apparatus used was constructed from glass enabling direct observation of the flow using a dye release technique and had ten traversable pressure instrumented tubes permitting detailed pressure distributions to be obtained. The `exchanger' had a large tube bundle (278 tubes) and main flow areas typical of practical designs. Six geometries were studied: three baffle spacings both with and without baffle leakage. Results are also presented of three-dimensional modelling of shellside flows using the Harwell Laboratory's FLOW3D code. Flow visualisation provided flow patterns in the central plane of the bundle and adjacent to the shell wall. Comparison of these high-lighted significant radial flow variations. In particular, separated regions, originating from the baffle tips, were observed. The size of these regions was small in the bundle central plane but large adjacent to the shell wall and extended into the bypass lane. This appeared to reduce the bypass flow area and hence the bypass flow fraction. The three-dimensional flow modelling results were presented as velocity vector and isobar maps. The vector maps illustrated regions of high and low velocity which could be prone to tube vibration and fouling. Separated regions were also in evidence. A non-uniform crossflow was discovered with, in general, higher velocities in the central plane of the bundle than near the shell wall._The form of the isobar maps calculated by FLOW3D was in good agreement with experimental results. In particular, larger pressure drops occurred across the inlet than outlet of a crossflow region and were higher near the upstream than downstream baffle face. The effect of baffle spacing and baffle leakage on crossflow and window pressure drop measurements was identified. Agreement between the current measurements, previously obtained data and commonly used design correlations/models was, in general, poor. This was explained in terms of the increased understanding of shellside flow. The bulk of previous data, which dervies from small-scale rigs with few tubes, have been shown to be unrepresentative of typical commerical units. The Heat Transfer and Fluid Flow Service design program TASC provided the best predictions of the current pressure drop results. However, a number of simple one-dimensional models in TASC are, individually, questionable. Some revised models have been proposed.
Resumo:
When two solutions differing in solute concentration are separated by a porous membrane, the osmotic pressure will generate a net volume flux of the suspending fluid across the membrane; this is termed osmotic flow. We consider the osmotic flow across a membrane with circular cylindrical pores when the solute and the pore walls are electrically charged, and the suspending fluid is an electrolytic solution containing small cations and anions. Under the condition in which the radius of the pores and that of the solute molecules greatly exceed those of the solvent as well as the ions, a fluid mechanical and electrostatic theory is introduced to describe the osmotic flow in the presence of electric charge. The interaction energy, including the electrostatic interaction between the solute and the pore wall, plays a key role in determining the osmotic flow. We examine the electrostatic effect on the osmotic flow and discuss the difference in the interaction energy determined from the nonlinear Poisson-Boltzmann equation and from its linearized equation (the Debye-Hückel equation).
Resumo:
In recent years, there has been considerable interest in the potential antibacterial properties that bioactive glasses may possess. However, there have been several conflicting reports on the antibacterial efficacy of 45S5 Bioglass®. Various mechanisms regarding its mode of action have been proposed, such as changes in the environmental pH, increased osmotic pressure, and ‘needle like’ sharp glass debris which could potentially damage prokaryotic cell walls and thus inactivate bacteria. In this current study, a systematic investigation was undertaken on the antibacterial efficacy of 45S5 Bioglass® on Escherichia coli NCTC 10538 and Staphylococcus aureus ATCO 6538 under a range of clinically relevant scenarios including varying Bioglass® concentration, direct and indirect contact between Bioglass® and microorganisms, static and shaking incubation conditions, elevated and neutralised pH environments. The results demonstrated that under elevated pH conditions, Bioglass® particles has no antibacterial effect on S. aureus whilst, a concentration dependent antibacterial effect against E. coli was observed. However, the antibacterial activity ceased when the pH of the media was neutralised. The results of this current study therefore suggest that the mechanism of antibacterial activity of Bioglass® is associated with changes in the environmental pH; an environment that is less likely to occur in vivo due to buffering of the system.