7 resultados para IN-SITU XPS
em Aston University Research Archive
Resumo:
Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.
Resumo:
An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 − sites to OH− and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C–H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.
Resumo:
The thermal evolution of titania-supported Au shell–Pd core bimetallic nanoparticles, prepared via colloidal routes, has been investigated by in situ XPS, DRIFTS, EXAFS and XRD and ex situ HRTEM. As-prepared nanoparticles are terminated by a thin (∼5 layer) Au shell, encapsulating approximately 20 nm diameter cuboctahedral palladium cores, with the ensemble stabilised by citrate ligands. The net gold composition was 40 atom%. Annealing in vacuo or under inert atmosphere rapidly pyrolyses the citrate ligands, but induces only limited Au/Pd intermixing and particle growth <300 °C. Higher temperatures promote more dramatic alloying, accompanied by significant sintering and surface roughening. These changes are mirrored by the nanoparticle catalysed liquid phase selective aerobic oxidation of crotyl alcohol to crotonaldehyde; palladium surface segregation enhances both activity and selectivity, with the most active surface alloy attainable containing ∼40 atom% Au.
Resumo:
The rational design of new heterogeneous catalysts for clean chemical technologies can be accelerated by molecular level insight into surface chemical processes. In-situ methodologies, able to provide time-resolved and/or pressure dependent information on the evolution of reacting adsorbed layers over catalytically relevant surfaces, are therefore of especial interest. Here we discuss the application of in-situ XPS and in-situ, synchronous DRIFTS/MS/XAS methodologies to elucidate the active site in Pd-catalyzed, selective aerobic oxidation of allylic alcohols.
Resumo:
High temperature processing of solvothermally synthesised MgO nanoparticles promotes striking changes in their morphology, and surface chemical and electronic structure. As-prepared NanoMgO comprised ∼4 nm cubic periclase nanocrystals, interspersed within an amorphous Mg(OH)(OCH3) matrix. These crystallites appear predominantly (1 0 0) terminated, and the overall material exhibits carbonate and hydroxyl surface functionalities of predominantly weak/moderate base character. Heating promotes gradual crystallisation and growth of the MgO nanoparticles, and concomitant loss of Mg(OH)(OCH3). In situ DRIFTS confirms the residual precursor and surface carbonate begin to decompose above 300 °C, while in situ XPS shows these morphological changes are accompanied by the disappearance of surface hydroxyl/methoxide species and genesis of O- centres which enhance both the surface density and basicity of the resulting stepped and defective MgO nanocrystals. The catalytic performance in tributyrin transesterification with methanol is directly proportional to the density of strong surface base sites. © 2010 Elsevier B.V. All rights reserved.
Resumo:
The selective oxidation of crotyl alcohol to crotonaldehyde over ultrathin Au overlayers on Pd(1 1 1) and Au/Pd(1 1 1) surface alloys has been investigated by time-resolved X-ray photoelectron spectroscopy (XPS) and mass spectrometry. Pure gold is catalytically inert towards crotyl alcohol which undergoes reversible adsorption. In contrast, thermal processing of a 3.9 monolayer (ML) gold overlayer allows access to a range of AuPd surface alloy compositions, which are extremely selective towards crotonaldehyde production, and greatly reduce the extent of hydrocarbon decomposition and eventual carbon laydown compared with base Pd(1 1 1). XPS and CO titrations suggest that palladium-rich surface alloys offer the optimal balance between alcohol oxidative dehydrogenation activity while minimising competitive decomposition pathways, and that Pd monomers are not the active surface ensemble for such selox chemistry over AuPd alloys. Crown Copyright © 2008.
Resumo:
The structural evolution of a Pd/C catalyst during the liquid phase selective aerobic oxidation of cinnamyl alcohol has been followed by in situ XAFS and XPS. The fresh catalyst comprised highly dispersed, heavily oxidised Pd particles. Cinnamyl alcohol oxidation resulted in the rapid reduction of surface palladium oxide and a small degree of concomitant particle growth. These structural changes coincided with a large drop in catalytic activity. Prereduced Pd/C exhibited a significantly lower initial oxidation rate demonstrating the importance of surface metal oxide in effecting catalytic oxidation. Use of a Pd black model system confirmed that the oxide→metal transformation was the cause, and not result, of catalyst deactivation.