3 resultados para Hyperinsulinaemia

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensitive and precise radioimmunoassays for insulin and glucagon have been established. Although it was possible to employ similar precepts to the development of both hormone assays, the establishment of a reliable glucagon radioimmunoassay was complicated by the poor immunogenicity and instability of the peptide. Thus, unlike insulin antisera which were prepared by monthly injection of guinea pigs with crystalline insulin emulsified in adjuvant, the successful production of glucagon antisera was accomplished by immunisation of rabbits and guinea pigs with glucagon covalently linked to bovine plasma albumin. The conventional chloramine-T iodination with purification by gel chromatography was only suitable for the production of labelled insulin. Quality tracer for use in the glucagon radioimmunoassay was prepared by trace iodination, with subsequent purification of monoiodinated glucagon by anion exchange chromatography. Separation of free and antibody bound moieties by coated charcoal was applicable to both hormone assays, and a computerised data processing system, relying on logit-log transformation, was used to analyse all assay results. The assays were employed to evaluate the regulation of endocrine pancreatic function and the role of insulin and glucagon in the pathogenesis of the obese hyperglycaemic syndrome in mice. In the homozygous (ob/ob) condition, mice of the Birmingham strain were characterised by numerous abnormalities of glucose homeostasis, several of which were detected in heterozygous (ob/+) mice. Obese mice exhibited pancreatic alpha cell dysfunction and hyperglucagonaemia. Investigation of this defect revealed a marked insensitivity of an insulin dependent glucose sensing mechanism that inhibited glucagon secretion. Although circulating glucagon was of minor importance in the maintenance of hyperinsulinaemia, lack of suppression of alpha cell function by glucose and insulin contributed significantly to both the insulin insensitivity and the hyperglycaemia of obese mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is a disease of excess adiposity affecting> 17% of men and >20% of women in Britain. Clinically, it is defined by a Body Mass Index (BMI, kg/m2) of 2:30. Obesity is a confounding factor that promotes insulin resistance, hyperinsulinaemia and type 2 diabetes. Type 2 diabetes accounts for >90% of all cases of diabetes, with a prevalence of 2-6% of adults in most western societies, a majority of which are overweight or obese. Weight loss in obese patients reduces the risk of developing diabetes by >50%. This thesis has investigated the first part of a two-stage therapeutic intervention against obesity in which adipose tissue lipolysis will be combined with increased energy expenditure: the approach is also designed to consider agents that will benefit glycaemic control in coexistent obesity and diabetes by improving insulin sensitivity. Rodent and human in vitro models of adipocyte biology and skeletal muscle have been developed, characterised and evaluated. They include isolated epididymal and parametrial adipocytes of lean and obese diabetic ob/ob mice, cultured 3T3-Ll preadipocytes, isolated human omental and subcutaneous adipocytes and rat L6 cultured muscle cells. Compounds investigated for anti-obesity and anti-diabetic properties include M2 (sibutramine metabolite), 3-guanidinopropionic acid and mazindol. In vivo studies were undertaken to investigate these compounds further in lean and ob/ob mice. In vivo studies indicated that M2 and 3-guanidinopropionic acid reduced body weight gain in ob/ob mice. The three compounds increased lipolysis in adipocytes isolated from lean and ob/ob mice and human adipose depots. The direct action of these compounds was mediated via a pathway involving the f3 adrenoceptors and components of the lipolytic signalling pathway, including protein kinase A and p38 MAP kinase. In addition, M2 and mazindol were capable of increasing glucose uptake into insulin sensitive tissues. M2 and mazindol can act directly on adipose tissue and skeletal muscle to increase glucose uptake via a pathway involving new protein synthesis and activation of the glucose transporters. The M2-stimulated pathway is activated by the conversion of phosphatidylinositol bisphosphate to phosphatidylinositol trisphosphate by phosphatidylinositol 3-kinase. Thus, M2, mazindol and 3-GPA showed pharmacodynamic properties which suggested they might be potential therapeutic treatments for obesity and diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The antihyperglycaemic agent metformin is widely used in the treatment of type 2 diabetes. Data from the UK Prospective Diabetes Study and retrospective analyses of large healthcare databases concur that metformin reduces the incidence of myocardial infarction and increases survival in these patients. This apparently vasoprotective effect appears to be independent of the blood glucose-lowering efficacy. Effects of metformin: Metformin has long been known to reduce the development of atherosclerotic lesions in animal models, and clinical studies have shown the drug to reduce surrogate measures such as carotid intima-media thickness. The anti-atherogenic effects of metformin include reductions in insulin resistance, hyperinsulinaemia and obesity. There may be modest favourable effects against dyslipidaemia, reductions in pro-inflammatory cytokines and monocyte adhesion molecules, and improved glycation status, benefiting endothelial function in the macro- and micro-vasculature. Additionally metformin exerts anti-thrombotic effects, contributing to overall reductions in athero-thrombotic risk in type 2 diabetic patients. © 2008 Springer Science+Business Media, LLC.