12 resultados para Hype Cycle Model
em Aston University Research Archive
Resumo:
The traditional waterfall software life cycle model has several weaknesses. One problem is that a working version of a system is unavailable until a late stage in the development; any omissions and mistakes in the specification undetected until that stage can be costly to maintain. The operational approach which emphasises the construction of executable specifications can help to remedy this problem. An operational specification may be exercised to generate the behaviours of the specified system, thereby serving as a prototype to facilitate early validation of the system's functional requirements. Recent ideas have centred on using an existing operational method such as JSD in the specification phase of object-oriented development. An explicit transformation phase following specification is necessary in this approach because differences in abstractions between the two domains need to be bridged. This research explores an alternative approach of developing an operational specification method specifically for object-oriented development. By incorporating object-oriented concepts in operational specifications, the specifications have the advantage of directly facilitating implementation in an object-oriented language without requiring further significant transformations. In addition, object-oriented concepts can help the developer manage the complexity of the problem domain specification, whilst providing the user with a specification that closely reflects the real world and so the specification and its execution can be readily understood and validated. A graphical notation has been developed for the specification method which can capture the dynamic properties of an object-oriented system. A tool has also been implemented comprising an editor to facilitate the input of specifications, and an interpreter which can execute the specifications and graphically animate the behaviours of the specified systems.
Resumo:
The present scarcity of operational knowledge-based systems (KBS) has been attributed, in part, to an inadequate consideration shown to user interface design during development. From a human factors perspective the problem has stemmed from an overall lack of user-centred design principles. Consequently the integration of human factors principles and techniques is seen as a necessary and important precursor to ensuring the implementation of KBS which are useful to, and usable by, the end-users for whom they are intended. Focussing upon KBS work taking place within commercial and industrial environments, this research set out to assess both the extent to which human factors support was presently being utilised within development, and the future path for human factors integration. The assessment consisted of interviews conducted with a number of commercial and industrial organisations involved in KBS development; and a set of three detailed case studies of individual KBS projects. Two of the studies were carried out within a collaborative Alvey project, involving the Interdisciplinary Higher Degrees Scheme (IHD) at the University of Aston in Birmingham, BIS Applied Systems Ltd (BIS), and the British Steel Corporation. This project, which had provided the initial basis and funding for the research, was concerned with the application of KBS to the design of commercial data processing (DP) systems. The third study stemmed from involvement on a KBS project being carried out by the Technology Division of the Trustees Saving Bank Group plc. The preliminary research highlighted poor human factors integration. In particular, there was a lack of early consideration of end-user requirements definition and user-centred evaluation. Instead concentration was given to the construction of the knowledge base and prototype evaluation with the expert(s). In response to this identified problem, a set of methods was developed that was aimed at encouraging developers to consider user interface requirements early on in a project. These methods were then applied in the two further projects, and their uptake within the overall development process was monitored. Experience from the two studies demonstrated that early consideration of user interface requirements was both feasible, and instructive for guiding future development work. In particular, it was shown a user interface prototype could be used as a basis for capturing requirements at the functional (task) level, and at the interface dialogue level. Extrapolating from this experience, a KBS life-cycle model is proposed which incorporates user interface design (and within that, user evaluation) as a largely parallel, rather than subsequent, activity to knowledge base construction. Further to this, there is a discussion of several key elements which can be seen as inhibiting the integration of human factors within KBS development. These elements stem from characteristics of present KBS development practice; from constraints within the commercial and industrial development environments; and from the state of existing human factors support.
Resumo:
The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.
Resumo:
The number of new chemical entities (NCE) is increasing every day after the introduction of combinatorial chemistry and high throughput screening to the drug discovery cycle. One third of these new compounds have aqueous solubility less than 20µg/mL [1]. Therefore, a great deal of interest has been forwarded to the salt formation technique to overcome solubility limitations. This study aims to improve the drug solubility of a Biopharmaceutical Classification System class II (BCS II) model drug (Indomethacin; IND) using basic amino acids (L-arginine, L-lysine and L-histidine) as counterions. Three new salts were prepared using freeze drying method and characterised by FT-IR spectroscopy, proton nuclear magnetic resonance ((1)HNMR), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). The effect of pH on IND solubility was also investigated using pH-solubility profile. Both arginine and lysine formed novel salts with IND, while histidine failed to dissociate the free acid and in turn no salt was formed. Arginine and lysine increased IND solubility by 10,000 and 2296 fold, respectively. An increase in dissolution rate was also observed for the novel salts. Since these new salts have improved IND solubility to that similar to BCS class I drugs, IND salts could be considered for possible waivers of bioequivalence.
Resumo:
Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.
Resumo:
A simulation model has been constructed of a valve manufacturing plant with the aim of assessing capacity requirements in response to a forecast increase in demand. The plant provides a weekly cycle of valves of varying types, based on a yearly production plan. Production control is provided by a just-in-time type system to minimise inventory. The simulation model investigates the effect on production lead time of a range of valve sequences into the plant. The study required the collection of information from a variety of sources, and a model that reflected the true capabilities of the production system. The simulation results convinced management that substantial changes were needed in order to meet demand. The case highlights the use of simulation in enabling a manager to quantify operational scenarios and thus provide a rational basis on which to take decisions on meeting performance criteria.
Resumo:
This paper discusses the use of a Model developed by Aston Business School to record the work load of its academic staff. By developing a database to register annual activity in all areas of teaching, administration and research the School has created a flexible tool which can be used for facilitating both day-to-day managerial and longer term strategic decisions. This paper gives a brief outline of the Model and discusses the factors which were taken into account when setting it up. Particular attention is paid to the uses made of the Model and the problems encountered in developing it. The paper concludes with an appraisal of the Model’s impact and of additional developments which are currently being considered. Aston Business School has had a Load Model in some form for many years. The Model has, however, been refined over the past five years, so that it has developed into a form which can be used for a far greater number of purposes within the School. The Model is coordinated by a small group of academic and administrative staff, chaired by the Head of the School. This group is responsible for the annual cycle of collecting and inputting data, validating returns, carrying out analyses of the raw data, and presenting the mater ial to different sections of the School. The authors of this paper are members of this steer ing group.
Resumo:
Assessment of oral drug bioavailability is an important parameter for new chemical entities (NCEs) in drug development cycle. After evaluating the pharmacological response of these new molecules, the following critical stage is to investigate their in vitro permeability. Despite the great success achieved by prodrugs, covalent linking the drug molecule with a hydrophobic moiety might result in a new entity that might be toxic or ineffective. Therefore, an alternative that would improve the drug uptake without affecting the efficacy of the drug molecule would be advantageous. The aim of the current study is to investigate the effect of ion-pairing on the permeability profile of a model drug: indomethacin (IND) to understand the mechanism behind the permeability improvement across Caco-2 monolayers. Arginine and lysine formed ion-pairs with IND at various molar ratios 1:1, 1:2, 1:4 and 1:8 as reflected by the double reciprocal graphs. The partitioning capacities of the IND were evaluated using octanol/water partitioning studies and the apparent permeabilities (P app) were measured across Caco-2 monolayers for the different formulations. Partitioning studies reflected the high hydrophobicity of IND (Log P = 3) which dropped upon increasing the concentrations of arginine/lysine in the ion pairs. Nevertheless, the prepared ion pairs improved IND permeability especially after 60 min of the start of the experiment. Coupling partitioning and permeability results suggest a decrease in the passive transcellular uptake due to the drop in IND portioning capacities and a possible involvement of active carriers. Future work will investigate which transport gene might be involved in the absorption of the ion paired formulations using molecular biology technologies. © 2014 Elsevier B.V. All rights reserved.
Resumo:
Structural evidence has demonstrated that P-glycoprotein (P-gp) undergoes considerable conformational changes during catalysis, and these alterations are important in drug interaction. Knowledge of which regions in P-gp undergo conformational alterations will provide vital information to elucidate the locations of drug binding sites and the mechanism of coupling. A number of investigations have implicated transmembrane segment six (TM6) in drug-P-gp interactions, and a cysteine-scanning mutagenesis approach was directed to this segment. Introduction of cysteine residues into TM6 did not disturb basal or drug-stimulated ATPase activity per se. Under basal conditions the hydrophobic probe coumarin maleimide readily labeled all introduced cysteine residues, whereas the hydrophilic fluorescein maleimide only labeled residue Cys-343. The amphiphilic BODIPY-maleimide displayed a more complex labeling profile. The extent of labeling with coumarin maleimide did not vary during the catalytic cycle, whereas fluorescein maleimide labeling of F343C was lost after nucleotide binding or hydrolysis. BODIPY-maleimide labeling was markedly altered during the catalytic cycle and indicated that the adenosine 5'-(beta,gamma-imino)triphosphate-bound and ADP/vanadate-trapped intermediates were conformationally distinct. Our data are reconciled with a recent atomic scale model of P-gp and are consistent with a tilting of TM6 in response to nucleotide binding and ATP hydrolysis.
Resumo:
Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN. This changes the error statistics and impacts FEC performance. In this paper, we propose a novel semianalytical method for dimensioning binary Bose-Chaudhuri-Hocquenghem (BCH) codes for systems with PN. Our method involves extracting statistics from pre-FEC bit error rate (BER) simulations. We use these statistics to parameterize a bivariate binomial model that describes the distribution of bit errors. In this way, we relate pre-FEC statistics to post-FEC BER and BCH codes. Our method is applicable to pre-FEC BER around 10-3 and any post-FEC BER. Using numerical simulations, we evaluate the accuracy of our approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio.
Resumo:
Contemporary models of contrast integration across space assume that pooling operates uniformly over the target region. For sparse stimuli, where high contrast regions are separated by areas containing no signal, this strategy may be sub-optimal because it pools more noise than signal as area increases. Little is known about the behaviour of human observers for detecting such stimuli. We performed an experiment in which three observers detected regular textures of various areas, and six levels of sparseness. Stimuli were regular grids of horizontal grating micropatches, each 1 cycle wide. We varied the ratio of signals (marks) to gaps (spaces), with mark:space ratios ranging from 1 : 0 (a dense texture with no spaces) to 1 : 24. To compensate for the decline in sensitivity with increasing distance from fixation, we adjusted the stimulus contrast as a function of eccentricity based on previous measurements [Baldwin, Meese & Baker, 2012, J Vis, 12(11):23]. We used the resulting area summation functions and psychometric slopes to test several filter-based models of signal combination. A MAX model failed to predict the thresholds, but did a good job on the slopes. Blanket summation of stimulus energy improved the threshold fit, but did not predict an observed slope increase with mark:space ratio. Our best model used a template matched to the sparseness of the stimulus, and pooled the squared contrast signal over space. Templates for regular patterns have also recently been proposed to explain the regular appearance of slightly irregular textures (Morgan et al, 2012, Proc R Soc B, 279, 2754–2760)
Resumo:
This paper examines how the introduction and use of a new information system affects and is affected by the values of a diverse professional workforce. It uses the example of lecture capture systems in a university. Its contribution is to combine two concepts taken from actor-network theory, namely accumulation and inscription, and combine them with an integrated framework of diversity management. A model is developed of accumulation cycles in lecture capture usage, involving multiple interacting actants, including the broader environment, management commitment to diversity, work group characteristics, individual practices and the affordances of technology. Using this model, alternative future inscriptions can be identified - an optimal one, which enhances professional values, as a result of a virtuous accumulation cycle, or a sub-optimal one, as a result of a vicious cycle. It identifies diversity management as an important influence on how professional values are enhanced, modified or destroyed.