6 resultados para Hydrotalcite
em Aston University Research Archive
Resumo:
Using molecular dynamics (MD) simulations, we explore the structural and dynamical properties of siRNA within the intercalated environment of a Mg:Al 2:1 Layered Double Hydroxide (LDH) nanoparticle. An ab initio force field (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies: COMPASS) is used for the MD simulations of the hybrid organic-inorganic systems. The structure, arrangement, mobility, close contacts and hydrogen bonds associated with the intercalated RNA are examined and contrasted with those of the isolated RNA. Computed powder X-ray diffraction patterns are also compared with related LDH-DNA experiments. As a method of probing whether the intercalated environment approximates the crystalline or rather the aqueous state, we explore the stability of the principle parameters (e.g., the major groove width) that differentiate both A- and A'- crystalline forms of siRNA and contrast this with recent findings for the same siRNA simulated in water. We find the crystalline forms remain structurally distinct when intercalated, whereas this is not the case in water. Implications for the stability of hybrid LDH-RNA systems are discussed.
Resumo:
An alkali- and nitrate-free hydrotalcite coating has been grafted onto the surface of a hierarchically ordered macroporous-mesoporous SBA-15 template via stepwise growth of conformal alumina adlayers and their subsequent reaction with magnesium methoxide. The resulting low dimensional hydrotalcite crystallites exhibit excellent per site activity for the base catalysed transesterification of glyceryl triolein with methanol for FAME production.
Resumo:
Mg-Al hydrotalcite coatings have been grown on alumina via a novel alkali- and nitrate-free impregnation route and subsequent calcination and hydrothermal treatment. The resulting Mg-HT/AlO catalysts significantly outperform conventional bulk hydrotalcites prepared via co-precipitation in the transesterification of C-C triglycerides for fatty acid methyl ester (FAME) production, with rate enhancements increasing with alkyl chain length. This promotion is attributed to improved accessibility of bulky triglycerides to active surface base sites over the higher area alumina support compared to conventional hydrotalcites wherein many active sites are confined within the micropores. © 2014 The Royal Society of Chemistry.
Resumo:
A series of [Mg(1−x)Alx(OH)2]x+(CO3)x/n2− hydrotalcite materials with compositions over the range x = 0.25–0.55 have been synthesised using an alkali-free coprecipitation route. All materials exhibit XRD patterns characteristic of the hydrotalcite phase with a steady lattice expansion observed with increasing Mg content. XPS measurements reveal a decrease in both the Al and Mg photoelectron binding energies with Mg incorporation which correlates with the increased intra-layer electron density. All materials are effective catalysts for the liquid phase transesterification of glyceryl tributyrate with methanol for biodiesel production. The rate increases steadily with Mg content, with the Mg rich Mg2.93Al catalyst an order of magnitude more active than MgO, with pure Al2O3 being completely inert. The rate of reaction also correlates with intralayer electron density which can be associated with increased basicity.© 2005 Elsevier B.V. All rights reserved.
Resumo:
Biodiesel is a promising non-toxic and biodegradable renewable fuel, synthesized by the homogeneous base-catalyzed transesterification of vegetable oils or animal fats with methanol or ethanol. Removal of the base, typically Na or K alkoxide, after reaction is a major problem since aqueous quenching results in stable emulsions and saponification. The use of a solid base catalyst offers several process advantages including the elimination of a quenching step (and associated basic water waste) to isolate the products, and the opportunity to operate in a continuous process. The synthesis and characterization of a series of Li-doped CaO and Mg-Al hydrotalcite solid base catalysts were presented and their physicochemical properties were correlated with their activity in biodiesel synthesis. Both catalysts were effective solid bases for the transesterification of triglycerides to the methyl ester, with catalyst activity related to the electronic properties of Li and Mg dopants. This is an abstract of a paper presented at the 230th ACS National Meeting (Washington, DC 8/28/2005-9/1/2005).
Resumo:
The heterogeneously catalyzed transesterification reaction for the production of biodiesel from triglycerides was investigated for reaction mechanism and kinetic constants. Three elementary reaction mechanisms Eley-Rideal (ER), Langmuir-Hinshelwood-Hougen-Watson (LHHW), and Hattori with assumptions, such as quasi-steady-state conditions for the surface species and methanol adsorption, and surface reactions as the rate-determining steps were applied to predict the catalyst surface coverage and the bulk concentration using a multiscale simulation framework. The rate expression based on methanol adsorption as the rate limiting in LHHW elementary mechanism has been found to be statistically the most reliable representation of the experimental data using hydrotalcite catalyst with different formulations. © 2011 American Chemical Society.