16 resultados para Hydrogen bonds

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The title compound, C11H11NO3, has two mol-ecules in the asymmetric unit, which differ in the orientation of their side-chain OH groups, allowing them to form inter-molecular O - H⋯O hydrogen bonds to different acceptors. In one case, the acceptor is the OH group of the other mol-ecule, and in the other case it is an imide O=C group. This is the first example in the N-substituted phthalimide series in which independent mol-ecules have different types of acceptor. Mol-ecular-orbital calculations place the greatest negative charge on the OH group. © 2008 International Union of Crystallography.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A survey of crystal structures containing hydantoin, dihydrouracil and uracil derivatives in the Cambridge Structural Database revealed four main types of hydrogen bond motifs when derivatives with extra substituents able to interfere with the main motif are excluded. All these molecules contain two hydrogen bond donors and two hydrogen bond acceptors in the sequence of NH, C = O, NH, and C=O groups within a 5-membered ring (hydantoin) and two 6-membered rings (dihydrouracil and uracil). In all cases, both ring NH groups act as donors in the main hydrogen bond motif but there is an excess of hydrogen bond acceptors (two C=O able to accept twice each) and so two possibilities are found: (i) each carbonyl O atom may accept one hydrogen bond or (ii) one carbonyl O atom may accept two hydrogen bonds while the other does not participate in the hydrogen bonding. We observed different preferences in the type and symmetry of the motifs adopted by the different derivatives, and a good agreement is found between motifs observed experimentally and those predicted using computational methods. We identified certain molecular factors such as chirality, substituent size and the possibility of C-H⋯O interactions as important factors influencing the motif observation. © 2012 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogen bonds play important roles in maintaining the structure of proteins and in the formation of most biomolecular protein-ligand complexes. All amino acids can act as hydrogen bond donors and acceptors. Among amino acids, Histidine is unique, as it can exist in neutral or positively charged forms within the physiological pH range of 5.0 to 7.0. Histidine can thus interact with other aromatic residues as well as forming hydrogen bonds with polar and charged residues. The ability of His to exchange a proton lies at the heart of many important functional biomolecular interactions, including immunological ones. By using molecular docking and molecular dynamics simulation, we examine the influence of His protonation/deprotonation on peptide binding affinity to MHC class II proteins from locus HLA-DP. Peptide-MHC interaction underlies the adaptive cellular immune response, upon which the next generation of commercially-important vaccines will depend. Consistent with experiment, we find that peptides containing protonated His residues bind better to HLA-DP proteins than those with unprotonated His. Enhanced binding at pH 5.0 is due, in part, to additional hydrogen bonds formed between peptide His+ and DP proteins. In acidic endosomes, protein His79β is predominantly protonated. As a result, the peptide binding cleft narrows in the vicinity of His79β, which stabilizes the peptide - HLA-DP protein complex. © 2014 Bentham Science Publishers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three British bituminous coals, (Gedling, Cresswell, and Cortonwood Silkstone) were selected for study. Procedures were developed, using phase transfer catalysts (PTC's), to degrade the solvent insoluble fractions of the coals. PTC's are of interest because they have the potential to bring about selective high conversion reactions, under mild conditions, (often in the past, severe reaction conditions have had to be used to degrade the coals, this in turn resulted in the loss of much of the structural information). We have applied a variety of physical and chemical techniques to maximise the amount of structural information, these include, elemental analysis, 1H-NMR, 13C-CPMAS-NMR, GPC, GC-MS, FTIR spectroscopy, DRIFT spectroscopy, and gas adsorption measurements. The main conclusions from the work are listed below:- ( 1 ) PTC O-methylation; This reaction removes hydrogen bonds within the coal matrix by 'capping' the phenolic groups. It was found that the polymer-like matrix could be made more flexible, but not significantly more soluble, by O-methylation. I.E. the trapped or 'mobile' phase of the coals could be removed at a faster rate after this reaction had been carried out. ( 2 ) PTC Reductive and Acidic Ether Cleavage; The three coals were found to contain insignificant amounts of dialkyl and alkyl aryl ethers. The number of diaryl ethers could not be estimated, by reductive ether cleavage, (even though a high proportion of all three coals was solublised). The majority of the ethers present in the coals were inert to both cleavage methods, and are therefore assumed to be heterocyclic ethers. ( 3 ) Trif!uoroperacetic Acid Oxidation; This oxidant was used to study the aliphatic portions of the polymer-like macromolecular matrix of the coals. Normally this reagent will only solublise low rank coals, we however have developed a method whereby trifluoroperacetic acid can be used to degrade high rank bituminous coals. ( 4 ) PTC/Permanganate Oxidation; This reagent has been found to be much more selective than the traditional alkaline permanganate oxidation, with a lot more structural information being retained within the various fractions. This degradative method therefore has the potential of yielding new information about the molecular structure of coals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The antitumour imidazotetrazinones are believed to act as prodrugs for the triazene series of alkylating agents, showing a marked pteference for the alkylation of the middle guanine residue in a run of three or more contiguous guanines. However, the. exact nature of the interactions of imidazotetrazinones within the micro~environment of DNA are; as yet unknown. In order to examine such interactions a three pronged approach involving molecular modelling, synthetic chemistry and biological analysis has been undertaken during the course of this project. . Molecular modelling studies have shown that for the 8-carboxamido substituted imidazotetrazinones antitumour activity is dependent upon the. presence of a free NH group which can be involved in the formation of both intramolecular and intermolecular hydrogen bonds, and the presence of a non-bulky substituent with a small negative potential . volume. Modelling studies involving the docking of .mitozolomide into the major groove of DNA in the region of a triguanine sequence has shown that a number of hydrogen bonding interactions are feasible. A series of 8-substituted carboxamide derivatives of mitozolomide have been synthesised via the 8-acid chloride and 8-carboxylic acid derivatives including a number of peptide analogues. The peptide derivatives were based upon the key structural features of the helix-turn-helix motif of DNA-binding proteins with a view to developing agents that are capable of binding to DNA with greater selectivity. An examination of the importance of intramolecular hydrogen bonding in influencing the antitumour activity:of :the imidazotetrazinones has led to the synthesis of the novel pyrimido[4',5' :4,3]pyrazolo[5,1-d]-1,2,3,5-tetrazine ring system. In general, in vitro cytotoxicity assays showed that the new derivatives were less active against the TLX5 lymphoma cell line. than the parent compound mitozolomide despite an increased potential for hydrogen bonding interactions. Due to the high reactivity of the: tetrazinone ring system it is difficult to study the interactions between the imidazotetrazinones and DNA. Consequently a number of structural analogues that are stable under physiological conditions have been. prepared based upon the 1,2,3 triazin-4(3H)-one ring system fused with both benzene and pyrazole rings. Although the 3-methylbenzotriazinones failed to antagonise the cytotoxic activity of temozolomide encouraging results with a 3-methylpyrazolotriazinone may suggest the existence of an imidazotetrazinone receptor site within DNA. The potential of guanine rich sequences to promote the alkylating selectivity of imidazotetrazinones by acting as a catalyst for ring cleavage and thereby generation of the alkylating agent was examined. Experiments involving the monitoring: of the rate of breakdown of mitozolomide incubated in the presence of synthetic oIigonucleotides did not reveal any catalytic effect resulting from the DNA. However, it was noted that the breakdown of mitozolomide was dependent upon the type of buffer used in the incubations and this may indeed mask any catalysis by the oligonucleotides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis comprises two main objectives. The first objective involved the stereochemical studies of chiral 4,6-diamino-1-aryl-1,2-dihydro-s-triazines and an investigation on how the different conformations of these stereoisomers may affect their binding affinity to the enzyme dihydrofolate reductase (DHFR). The ortho-substituted 1-aryl-1,2-dihydro-s-triazines were synthesised by the three component method. An ortho-substitution at the C6' position was observed when meta-azidocycloguanil was decomposed in acid. The ortho-substituent restricts free rotation and this gives rise to atropisomerism. Ortho-substituted 4,6-diamino-1-aryl-2-ethyl-1,2-dihydro-2-methyl-s-triazine contains two elements of chirality and therefore exists as four stereoisomers: (S,aR), (R,aS), (R,aR) and (S,aS). The energy barriers to rotation of these compounds were calculated by a semi-empirical molecular orbital program called MOPAC and they were found to be in excess of 23 kcal/mol. The diastereoisomers were resolved and enriched by C18 reversed phase h.p.l.c. Nuclear overhauser effect experiments revealed that (S,aR) and (R,aS) were the more stable pair of stereoisomers and therefore existed as the major component. The minor diastereoisomers showed greater binding affinity for the rat liver DHFR in in vitro assay. The second objective entailed the investigation into the possibility of retaining DHFR inhibitory activity by replacing the classical diamino heterocyclic moiety with an amidinyl group. 4-Benzylamino-3-nitro-N,N-dimethyl-phenylamidine was synthesised in two steps. One of the two phenylamidines indicated weak inhibition against the rat liver DHFR. This weak activity may be due to the failure of the inhibitor molecule to form strong hydrogen bonds with residue Glu-30 at the active site of the enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salt formation has extensively been studied as a strategy to improve drug solubility but it has not been explored as a strategy to improve mechanical properties. A better understanding of which factors of the solid state can have an influence in the mechanical properties of pharmaceutical powders can help to optimise and reduce cost of tablet manufacturing. The aim of this study was to form different series of amine salts of flurbiprofen, gemfibrozil and diclofenac and to establish predictive relationships between architectural characteristics and physicochemical and mechanical properties of the salts. For this purpose, three different carboxylic acid drugs were selected: flurbiprofen, gemfibrozil and diclofenac, similar in size but varying in flexibility and shape and three different series of counterions were also chosen: one with increasing bulk and no hydroxyl groups to limit the hydrogen bonding potential; a second one with increasing number of hydroxyl groups and finally a third series, related to the latter in number of hydroxyl groups but with different molecular shape and flexibility. Physico-chemical characterization was performed (DSC, TGA, solubility, intrinsic dissolution rate, particle size, true density) and mechanical properties measured using a compaction replicator. Strained molecular conformations produce weaker compacts as they have higher energy than preferred conformations that usually lie close to energy minimums and oppose plastic deformation. It was observed that slip planes, which correspond to regions of weakest interaction between the planes, were associated with improved plasticity and stronger compacts. Apart from hydrogen bonds, profuse van der Waals forces can result in ineffective slip planes. Salts displaying two-dimensional densely hydrogen bonded layers produced stronger compacts than salts showing one-dimensional networks of non-bonded columns, probably by reducing the attachment energy between layers. When hydrogen bonds are created intramolecularly, it is possible that the mechanical properties are compromised as they do not contribute so much to create twodimensional densely bonded layers and they can force molecules into strained conformations. Some types of hydrogen bonding network may be associated with improved mechanical properties, such as type II, or R (10) 3 4 using graph-set notation, versus type III, or R (12) 4 8 , columns. This work clearly demonstrates the potential of investigating crystal structure-mechanical property relationship in pharmaceutical materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using molecular dynamics (MD) simulations, we explore the structural and dynamical properties of siRNA within the intercalated environment of a Mg:Al 2:1 Layered Double Hydroxide (LDH) nanoparticle. An ab initio force field (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies: COMPASS) is used for the MD simulations of the hybrid organic-inorganic systems. The structure, arrangement, mobility, close contacts and hydrogen bonds associated with the intercalated RNA are examined and contrasted with those of the isolated RNA. Computed powder X-ray diffraction patterns are also compared with related LDH-DNA experiments. As a method of probing whether the intercalated environment approximates the crystalline or rather the aqueous state, we explore the stability of the principle parameters (e.g., the major groove width) that differentiate both A- and A'- crystalline forms of siRNA and contrast this with recent findings for the same siRNA simulated in water. We find the crystalline forms remain structurally distinct when intercalated, whereas this is not the case in water. Implications for the stability of hybrid LDH-RNA systems are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purine and pyrimidine triplex-forming oligonucleotides (TFOs), as potential antibacterial agents, were designed to bind by Hoogsteen and reverse Hoogsteen hydrogen bonds in a sequence specific manner in the major groove of genomic DNA at specific polypurine sites within the gyrA gene of E. coli and S. pneumoniae. Sequences were prepared by automated synthesis, with purification and characterisation determined by high performance liquid chromatograpy, capillary electrophoresis and mass spectrometry. Triplex stability was assessed using melting curves where the binding of the third strand to the duplex target, was assessed over a temperature range of 0-80°C, and at pH 6.4 and 7.2. The most successful of the unmodified TFOs (6) showed a Tm value of 26 °C at both pH values with binding via reverse Hoogsteen bonds. Binding to genomic DNA was also demonstrated by spectrofluorimetry, using fluorescein-labelled TFOs, from which dissociation constants were determined. Modifications in the form of 5mC, 5' acridine attachment, phosphorothioation, 2'-0-methylation and phosphoramidation, were made in order to. increase Tm values. Phosphoramidate modification was the most with increased Tm values of 42°C. However, the final purity of these sequences was poor due to their difficult syntheses. FACS (fluorescent activated cell sorting) analysis was used to determine the potential uptake of a fluorescently labelled analogue of 6 via passive, coJd shock mediated, and anionic liposome aided, uptake. This was established at 20°C and 37°C. At both temperatures anionic lipid-mediated uptake produced unrivalled fluorescence, equivalent to 20 and 43% at 20 and 37°C respectively. Antibacterial activity of each oligonucleotide was assessed by viable count anaJysis relying on passive uptake, cold shocking techniques, chlorpromazine-mediated uptake, and, cationic and anionic lipid-aided uptake. All oligonucleotides were assessed for their ability to enhance uptake, which is a major barrier to the effectiveness of these agents. Compound 6 under cold shocking conditions produced the greatest consistent decline in colony forming units per ml. Results for this compound were sometimes variable indicating inconsistent uptake by this particular assay method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The preparation and characterization of two new neutral ferric complexes with desolvation-induced discontinuous spin-state transformation above room temperature are reported. The compounds, Fe(Hthpy)(thpy).CH3OH.3H2O (1) and Fe(Hmthpy)(mthpy).2H2O (2), are low-spin (LS) at room temperature and below, whereas their nonsolvated forms are high-spin (HS), exhibiting zero-field splitting. In these complexes, Hthpy, Hmthpy, and thpy, mthpy are the deprotonated forms of pyridoxal thiosemicarbazone and pyridoxal methylthiosemicarbazone, respectively; each is an O,N,S-tridentate ligand. The molecular structures have been determined at 100(1) K using single-crystal X-ray diffraction techniques and resulted in a triclinic system (space group P1) and monoclinic unit cell (space group P21/c) for 1 and 2, respectively. Structures were refined to the final error indices, where RF = 0.0560 for 1 and RF = 0.0522 for 2. The chemical inequivalence of the ligands was clearly established, for the "extra" hydrogen atom on the monodeprotonated ligands (Hthpy, Hmthpy) was found to be bound to the nitrogen of the pyridine ring. The ligands are all of the thiol form; the doubly deprotonated chelates (thpy, mthpy) have C-S bond lengths slightly longer than those of the singly deprotonated forms. There is a three-dimensional network of hydrogen bonds in both compounds. The discontinuous spin-state transformation is accompanied with liberation of solvate molecules. This is evidenced also from DSC analysis. Heat capacity data for the LS and HS phases are tabulated at selected temperatures, the values of the enthalpy and entropy changes connected with the change of spin state were reckoned at DeltaH = 12.5 0.3 kJ mol-1 and DeltaS = 33.3 0.8 J mol-1 K-1, respectively, for 1 and DeltaH = 6.5 0.3 kJ mol-1 and DeltaS = 17.6 0.8 J mol-1 K-1, respectively, for 2

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interlayer pores of swelling 2:1 clays provide an ideal 2-dimensional environment in which to study confined fluids. In this paper we discuss our understanding of the structure and dynamics of interlayer fluid species in expanded clays, based primarily on the outcome of recent molecular modelling and neutron scattering studies. Counterion solvation is compared with that measured in bulk solutions, and at a local level the cation-oxygen coordination is found to be remarkably similar in these two environments. However, for the monovalent ions the contribution to the first coordination shell from the clay surfaces increases with counterion radius. This gives rise to inner-sphere (surface) complexes in the case of potassium and caesium. In this context, the location of the negative clay surface charge (i.e. arising from octahedral or tetrahedral substitution) is also found to be of major importance. Divalent cations, such as calcium, eagerly solvate to form outer-sphere complexes. These complexes are able to pin adjacent clay layers together, and thereby prevent colloidal swelling. Confined water molecules form hydrogen bonds to each other and to the clays' surfaces. In this way their local environment relaxes to close to the bulk water structure within two molecular layers of the clay surface. Finally, we discuss the way in which the simple organic molecules methane, methanol and ethylene glycol behave in the interlayer region of hydrated clays. Quasi-elastic neutron scattering of isotopically labelled interlayer CH 3OD and (CH2OD)2 in deuterated clay allows us to measure the diffusion of the CH3- and CH2-groups in both clay and liquid environments. We find that in both the one-layer methanol solvates and the two-layer glycol solvates the diffusion of the most mobile organic molecules is close to that in the bulk solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of substituted 4-(1-arylsulfonylindol-2-yl)-4-hydroxycyclohexa-2, 5-dien-1-ones (indolylquinols) has been synthesized on the basis of the discovery of lead compound 1a and screened for antitumor activity. Synthesis of this novel series was accomplished via the "one-pot" addition of lithiated (arylsulfonyl)indoles to 4,4-dimethoxycyclohexa-2,5-dienone followed by deprotection under acidic conditions. Similar methodology gave rise to the related naphtho-, 1H-indole-, and benzimidazole-substituted quinols. A number of compounds in this new series were found to possess in vitro human tumor cell line activity substantially more potent than the recently reported antitumor 4-substituted 4-hydroxycyclohexa-2,5-dien-1-ones1 with similar patterns of selectivity against colon, renal, and breast cell lines. The most potent compound in the series in vitro, 4-(1-benzenesulfonyl-6-fluoro-1H-indol- 2-yl)-4-hydroxycyclohexa-2,5-dienone (1h), exhibits a mean GI50 value of 16 nM and a mean LC50 value of 2.24 μM in the NCI 60-cell-line screen, with LC50 activity in the HCT 116 human colon cancer cell line below 10 nM. The crystal structure of the unsubstituted indolylquinol 1a exhibits two independent molecules, both participating in intermolecular hydrogen bonds from quinol OH to carbonyl O, but one OH group also interacts intramolecularly with a sulfonyl O atom. This interaction, which strengthens upon ab initio optimization, may influence the chemical environment of the bioactive quinol moiety. In vivo, significant antitumor activity was recorded (day 28) in mice bearing subcutaneously implanted MDA-MB-435 xenografts, following intraperitoneal treatment of mice with compound 1a at 50 mg/kg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A set of 38 epitopes and 183 non-epitopes, which bind to alleles of the HLA-A3 supertype, was subjected to a combination of comparative molecular similarity indices analysis (CoMSIA) and soft independent modeling of class analogy (SIMCA). During the process of T cell recognition, T cell receptors (TCR) interact with the central section of the bound nonamer peptide; thus only positions 4−8 were considered in the study. The derived model distinguished 82% of the epitopes and 73% of the non-epitopes after cross-validation in five groups. The overall preference from the model is for polar amino acids with high electron density and the ability to form hydrogen bonds. These so-called “aggressive” amino acids are flanked by small-sized residues, which enable such residues to protrude from the binding cleft and take an active role in TCR-mediated T cell recognition. Combinations of “aggressive” and “passive” amino acids in the middle part of epitopes constitute a putative TCR binding motif

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis and crystal structure determination (at 293 K) of the title complex, Cs[Fe(C8H6BrN3OS)2], are reported. The compound is composed of two dianionic O,N,S-tridentate 5-bromo­salicyl­aldehyde thio­semicarbazonate(2-) ligands coord­inated to an FeIII cation, displaying a distorted octa­hedral geometry. The ligands are orientated in two perpendicular planes, with the O- and S-donor atoms in cis positions and the N-donor atoms in trans positions. The complex displays inter­molecular N-H...O and N-H...Br hydrogen bonds, creating R44(18) rings, which link the FeIII units in the a and b directions. The FeIII cation is in the low-spin state at 293 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives Understanding the impact of the counterion on the properties of an acidic or basic drug may influence the choice of salt form, especially for less potent drugs with a high drug load per unit dose. The aim of this work was to determine the influence of the hydrogen bonding potential of the counterion on the crystal structure of salts of the poorly soluble, poorly compressible, acidic drug gemfibrozil and to correlate these with mechanical properties. Methods Compacts of the parent drug and the salts were used to determine Young's modulus of elasticity using beam bending tests. Crystal structures were determined previously from X-ray powder diffraction data. Key findings The free acid, tert-butylamine, 2-amino-2-methylpropan-1-ol and 2-amino-2-methylpropan-1, 3-diol salts had a common crystal packing motif of infinite hydrogen-bonded chains with cross-linking between pairs of adjacent chains. The tromethamine (trsi) salt, with different mechanical properties, had a two-dimensional sheet-like network of hydrogen bonds, with slip planes, forming a stiffer compact. Conclusions The type of counter ion is important in determining mechanical properties and could be selected to afford slip and plastic deformation. © 2010 Royal Pharmaceutical Society of Great Britain.