12 resultados para Hydraulic lime mortars

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most published work on either low- or high-rate biological filters covers one of three topics: kinetics, microbiology/ecology or hydraulics. These areas have been re-examined together for high-rate filters in order to further integrate them and enable appropriate utilization of low-rate filter experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to investigate: (1) whether foliose lichen thalli could be transplanted from one substrate to another and (2) whether such transplants could be used to study the influence of the substrate on growth. Hence, six saxicolous lichens, with contrasting distributions on lime-rich and lime-poor substrates in South Gwynedd, Wales, were transplanted onto slate, granite, asbestos and cement. Fragments of the perimeters of thalli were glued to the different substrates using Bostic adhesive. Parmelia conspersa (Ehrh. Ex Ach.)Ach. and Parmelia saxatilis (L.)Ach., fragments increased in area over 15 months on slate and granite but decreased in area or did not survive on asbestos and cement. Fragments of Xanthoria parietina (L.)Th.Fr. and Physcia tenella (Scop.)DC. em Bitt. did not survive on slate and granite while some fragments survived but grew poorly on asbestos and cement. Parmelia glabratula ssp. fuliginosa (Fr. ex Duby)Laund. fragments decreased in area on all substrates and especially on cement and asbestos while Physcia orbicularis (Neck.)Poetsch fragments increased in area on granite and cement, decreased on asbestos and did not change significantly on slate. The results suggested that the distribution of P. conspersa and P. saxatilis was determined primarily by physico-chemical properties of the substrate. By contrast, P. glabratula ssp. fuliginosa may have responded to the transplant procedure while X. parietina, Ph. tenella and Ph. orbicularis may require nutrient enrichment to grow successfully on a substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project has been undertaken for Hamworthy Hydraulics Limited. Its objective was to design and develop a controller package for a variable displacement, hydraulic pump for use mainly on mobile earth moving machinery. A survey was undertaken of control options used in practice and from this a design specification was formulated, the successful implementation of which would give Hamworthy an advantage over its competitors. Two different modes for the controller were envisaged. One consisted of using conventional hydro-mechanics and the other was based upon a microprocessor. To meet short term customer prototype requirements the first section of work was the realisation of the hydro-mechanical system. Mathematical models were made to evaluate controller stability and hence aid their design. The final package met the requirements of the specification and a single version could operate all sizes of variable displacement pumps in the Hamworthy range. The choice of controller options and combinations totalled twenty-four. The hydro-mechanical controller was complex and it was realised that a micro-processor system would allow all options to be implemented with just one design of hardware, thus greatly simplifying production. The final section of this project was to determine whether such a design was feasible. This entailed finding cheap, reliable transducers, using mathematical models to predict electro-hydraulic interface stability, testing such interfaces and finally incorporating a micro-processor in an interactive control loop. The study revealed that such a system was technically possible but it would cost 60% more than its hydro-mechanical counterpart. It was therefore concluded that, in the short term, for the markets considered, the hydro-mechanical design was the better solution. Regarding the micro-processor system the final conclusion was that, because the relative costs of the two systems are decreasing, the electro-hydraulic controller will gradually become more attractive and therefore Hamworthy should continue with its development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer modified cements and mortars have become popular for use as patch repair materials. General evidence suggests that these materials offer considerable improvements compared to traditional mortars although the mechanisms for this are not fully understood. This work elucidates the factors which govern some properties and performance of different polymer systems. In view of the wide range of commercial systems available, investigations concentrated on the use of three of the most commonly available groups of polymers. These were: (1) Styrene Butadiene Rubber (SBR), (2) Acrylics and, (3) Ethylene Vinyl Acetates (EVA). The later two were in the form of both emulsions and redispersible powders. Experiments concentrated on: (1) Rheological behaviour of polymer modified cement pastes; (2) Workability of polymer modified mortars; (3) Influence of curing conditions on the pore size distribution and diffusion of chloride ions; (4) Bond strength of polymer modified cement and mortar patches; and (5) Microscopic examination and semi-quantitative analyses of the bulk and interfacial microstructures. The following main conclusions were reached: (1) The addition of polymer emulsions have a considerable influence on the workability of fresh cement pastes, the extent of this depending on the type of system used. (2) The rheological parameters of fresh polymer modified mortars can be established using a two-point workability test which may be used when comparing the properties of different systems at constant workability. (3) Curing conditions affect the properties of polymer modified systems and a wet/dry curing regime was essential for good adhesion of these materials to mortar substrates. (4) In contrast, the wet/dry curing regime resulted in a curing affected zone at the surface of patch materials. This can result in a much coarser pore structure and enhanced diffusion of e.g. chloride ions. (5) The microstructure of polymer modified systems was very different compared with the unmodified cement/mortar and varied depending on curing conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluids used in hydraulic systems inevitably contain large numbers of small, solid particles, a phenomenon known as 'fluid contamination'. Particles enter a hydraulic system from the environment, and are generated within it by processes of wear. At the same time, particles are removed from the system fluid by sedimentation and in hydraulic filters. This thesis considers the problems caused by fluid contamination, as they affect a manufacturer of axial piston pumps. The specific project aim was to investigate methods of predicting or determining the effects of fluid contamination on this type of pump. The thesis starts with a theoretical analysis of the contaminated lubrication of a slipper-pad bearing. Statistical methods are used to develop a model of the blocking, by particles, of the control capillaries used in such bearings. The results obtained are compared to published, experimental data. Poor correlation between theory and practice suggests that more research is required in this area before such theoretical analysis can be used in industry. Accelerated wear tests have been developed in the U.S.A. in an attempt to predict pump life when operating on contaminated fluids. An analysis of such tests shows that reliability data can only be obtained from extensive test programmes. The value of contamination testing is suggested to be in determining failure modes, and in identifying those pump components which are susceptible to the effects of contamination. A suitable test is described, and the results of a series of tests on axial piston pumps are presented and discussed. The thesis concludes that pump reliability data can only be obtained from field experience. The level of confidence which can be placed in results from normal laboratory testing is shown to be too low for the data to be of real value. Recommendations are therefore given for the ways in which service data should be collected and analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new instrument and method are described that allow the hydraulic conductivities of highly permeable porous materials, such as gravels in constructed wetlands, to be determined in the field. The instrument consists of a Mariotte siphon and a submersible permeameter cell with manometer take-off tubes, to recreate in-situ the constant head permeameter test typically used with excavated samples. It allows permeability to be measured at different depths and positions over the wetland. Repeatability obtained at fixed positions was good (normalised standard deviation of 1–4%), and results obtained for highly homogenous silica sand compared well when the sand was retested in a lab permeameter (0.32 mm.s–1 and 0.31 mm.s–1 respectively). Practical results have a ±30% associated degree of uncertainty because of the mixed effect of natural variation in gravel core profiles, and interstitial clogging disruption during insertion of the tube into the gravel. This error is small, however, compared to the orders of magnitude spatial variations detected. The technique was used to survey the hydraulic conductivity profile of two constructed wetlands in the UK, aged 1 and 15 years respectively. Measured values were high (up to 900 mm.s –1) and varied by three orders of magnitude, reflecting the immaturity of the wetland. Detailed profiling of the younger system suggested the existence of preferential flow paths at a depth of 200 mm, corresponding to the transition between more coarse and less coarse gravel layers (6–12 mm and 3–6 mm respectively), and transverse drift towards the outlet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Structural ceramics were manufactured from industrial byproducts and lime by a compression moulding/vacuum dewatering technique. Treatment of these ceramics with supercritical carbon dioxide was found to both significantly increase their flexural strength and activate cementation in the industrial byproducts at least as efficiently as heat curing. Flexural strengths of up to 10 MPa were achieved. Strength improvements were associated with decreased porosity and conversion of calcium hydroxide to calcium carbonate. Life cycle assessment of proposed products made from such materials indicated that the total reduction in embodied carbon dioxide achieved, as a result of combining use of byproducts with recombination of carbon dioxide, was up to 70%. © 2010 Institute of Materials, Minerals and Mining.