10 resultados para Hydraulic Conductivity

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new instrument and method are described that allow the hydraulic conductivities of highly permeable porous materials, such as gravels in constructed wetlands, to be determined in the field. The instrument consists of a Mariotte siphon and a submersible permeameter cell with manometer take-off tubes, to recreate in-situ the constant head permeameter test typically used with excavated samples. It allows permeability to be measured at different depths and positions over the wetland. Repeatability obtained at fixed positions was good (normalised standard deviation of 1–4%), and results obtained for highly homogenous silica sand compared well when the sand was retested in a lab permeameter (0.32 mm.s–1 and 0.31 mm.s–1 respectively). Practical results have a ±30% associated degree of uncertainty because of the mixed effect of natural variation in gravel core profiles, and interstitial clogging disruption during insertion of the tube into the gravel. This error is small, however, compared to the orders of magnitude spatial variations detected. The technique was used to survey the hydraulic conductivity profile of two constructed wetlands in the UK, aged 1 and 15 years respectively. Measured values were high (up to 900 mm.s –1) and varied by three orders of magnitude, reflecting the immaturity of the wetland. Detailed profiling of the younger system suggested the existence of preferential flow paths at a depth of 200 mm, corresponding to the transition between more coarse and less coarse gravel layers (6–12 mm and 3–6 mm respectively), and transverse drift towards the outlet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Physically based distributed models of catchment hydrology are likely to be made available as engineering tools in the near future. Although these models are based on theoretically acceptable equations of continuity, there are still limitations in the present modelling strategy. Of interest to this thesis are the current modelling assumptions made concerning the effects of soil spatial variability, including formations producing distinct zones of preferential flow. The thesis contains a review of current physically based modelling strategies and a field based assessment of soil spatial variability. In order to investigate the effects of soil nonuniformity a fully three dimensional model of variability saturated flow in porous media is developed. The model is based on a Galerkin finite element approximation to Richards equation. Accessibility to a vector processor permits numerical solutions on grids containing several thousand node points. The model is applied to a single hillslope segment under various degrees of soil spatial variability. Such variability is introduced by generating random fields of saturated hydraulic conductivity using the turning bands method. Similar experiments are performed under conditions of preferred soil moisture movement. The results show that the influence of soil variability on subsurface flow may be less significant than suggested in the literature, due to the integrating effects of three dimensional flow. Under conditions of widespread infiltration excess runoff, the results indicate a greater significance of soil nonuniformity. The recognition of zones of preferential flow is also shown to be an important factor in accurate rainfall-runoff modelling. Using the results of various fields of soil variability, experiments are carried out to assess the validity of the commonly used concept of `effective parameters'. The results of these experiments suggest that such a concept may be valid in modelling subsurface flow. However, the effective parameter is observed to be event dependent when the dominating mechanism is infiltration excess runoff.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis reports on the development of a technique to evaluate hydraulic conductivities in a soil (Snowcal) subject to freezing conditions. The technique draws on three distinctly different disciplines, Nuclear Physics, Soil Physics and Remote Sensing to provide a non-destructive and reliable evaluation of hydraulic conductivity throughout a freezing test. Thermal neutron radiography is used to provide information on local water/ice contents at anytime throughout the test. The experimental test rig is designed so that the soil matrix can be radiated by a neutron beam, from a nuclear reactor, to obtain radiographs. The radiographs can then be interpreted, following a process of remote sensing image enhancement, to yield information on relative water/ice contents. Interpretation of the radiographs is accommodated using image analysis equipment capable of distinguishing between 256 shades of grey. Remote sensing image enhancing techniques are then employed to develop false colour images which show the movement of water and development of ice lenses in the soil. Instrumentation is incorporated in the soil in the form of psychrometer/thermocouples, to record water potential, electrical resistance probes to enable ice and water to be differentiated on the radiographs and thermocouples to record the temperature gradient. Water content determinations are made from the enhanced images and plotted against potential measurements to provide the moisture characteristic for the soil. With relevant mathematical theory pore water distributions are obtained and combined with water content data to give hydraulic conductivities. The values for hydraulic conductivity in the saturated soil and at the frozen fringe are compared with established values for silts and silty-sands. The values are in general agreement and, with refinement, this non-destructive technique could afford useful information on a whole range of soils. The technique is of value over other methods because ice lenses are actually seen forming in the soil, supporting the accepted theories of frost action. There are economic and experimental restraints to the work which are associated with the use of a nuclear facility, however, the technique is versatile and has been applied to the study of moisture transfer in porous building materials and could be further developed into other research areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents water flow (WF) into soil from several pitchers buried in the soil up to their neck and filled with water,under natural atmospheric conditions for a period of two years. Variation in daily WF into soil indicated a direct correlation with moisture deficit (MD) in atmosphere. WF increases linearly with MD for non rainy days. WF without hydraulic head through all pots varied in the order air>soil>water. Base line flow in water with respect to air was < 5%. WF for pots with hydraulic head was also in the order air>soil>water, but with significant increase in WF. Hydraulic conductivity Ks was in the order air>soil>water.Ks in water was independent of MD, whereas for air and soil, Ks increased with MD. Thus total WF is partially under hydraulic head and partly due to pull effect through capillary pores on pot wall either due to MD in air or prevailing soil water tension in soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) are used by Severn Trent Water as a low-cost tertiary wastewater treatment for rural locations. Experience has shown that clogging is a major operational problem that reduces HSSF TW lifetime. Clogging is caused by an accumulation of secondary wastewater solids from upstream processes and decomposing leaf litter. Clogging occurs as a sludge layer where wastewater is loaded on the surface of the bed at the inlet. Severn Trent systems receive relatively high hydraulic loading rates, which causes overland flow and reduces the ability to mineralise surface sludge accumulations. A novel apparatus and method, the Aston Permeameter, was created to measure hydraulic conductivity in situ. Accuracy is ±30 %, which was considered adequate given that conductivity in clogged systems varies by several orders of magnitude. The Aston Permeameter was used to perform 20 separate tests on 13 different HSSF TWs in the UK and the US. The minimum conductivity measured was 0.03 m/d at Fenny Compton (compared with 5,000 m/d clean conductivity), which was caused by an accumulation of construction fines in one part of the bed. Most systems displayed a 2 to 3 order of magnitude variation in conductivity in each dimension. Statistically significant transverse variations in conductivity were found in 70% of the systems. Clogging at the inlet and outlet was generally highest where flow enters the influent distribution and exits the effluent collection system, respectively. Surface conductivity was lower in systems with dense vegetation because plant canopies reduce surface evapotranspiration and decelerate sludge mineralisation. An equation was derived to describe how the water table profile is influenced by overland flow, spatial variations in conductivity and clogging. The equation is calibrated using a single parameter, the Clog Factor (CF), which represents the equivalent loss of porosity that would reproduce measured conductivity according to the Kozeny-Carman Equation. The CF varies from 0 for ideal conditions to 1 for completely clogged conditions. Minimum CF was 0.54 for a system that had recently been refurbished, which represents the deviation from ideal conditions due to characteristics of non-ideal media such as particle size distribution and morphology. Maximum CF was 0.90 for a 15 year old system that exhibited sludge accumulation and overland flow across the majority of the bed. A Finite Element Model of a 15 m long HSSF TW was used to indicate how hydraulics and hydrodynamics vary as CF increases. It was found that as CF increases from 0.55 to 0.65 the subsurface wetted area increases, which causes mean hydraulic residence time to increase from 0.16 days to 0.18 days. As CF increases from 0.65 to 0.90, the extent of overland flow increases from 1.8 m to 13.1 m, which reduces hydraulic efficiency from 37 % to 12 % and reduces mean residence time to 0.08 days.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mathematical model is presented for steady fluid flow across microvessel walls through a serial pathway consisting of the endothelial surface glycocalyx and the intercellular cleft between adjacent endothelial cells, with junction strands and their discontinuous gaps. The three-dimensional flow through the pathway from the vessel lumen to the tissue space has been computed numerically based on a Brinkman equation with appropriate values of the Darcy permeability. The predicted values of the hydraulic conductivity Lp, defined as the ratio of the flow rate per unit surface area of the vessel wall to the pressure drop across it, are close to experimental measurements for rat mesentery microvessels. If the values of the Darcy permeability for the surface glycocalyx are determined based on the regular arrangements of fibres with 6nm radius and 8nm spacing proposed recently from the detailed structural measurements, then the present study suggests that the surface glycocalyx could be much less resistant to flow compared to previous estimates by the one-dimensional flow analyses, and the intercellular cleft could be a major determinant of the hydraulic conductivity of the microvessel wall.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clogging is the main operational problem associated with horizontal subsurface flow constructed wetlands (HSSF CWs). The measurement of saturated hydraulic conductivity has proven to be a suitable technique to assess clogging within HSSF CWs. The vertical and horizontal distribution of hydraulic conductivity was assessed in two full-scale HSSF CWs by using two different in situ permeameter methods (falling head (FH) and constant head (CH) methods). Horizontal hydraulic conductivity profiles showed that both methods are correlated by a power function (FH= CH 0.7821, r 2=0.76) within the recorded range of hydraulic conductivities (0-70 m/day). However, the FH method provided lower values of hydraulic conductivity than the CH method (one to three times lower). Despite discrepancies between the magnitudes of reported readings, the relative distribution of clogging obtained via both methods was similar. Therefore, both methods are useful when exploring the general distribution of clogging and, specially, the assessment of clogged areas originated from preferential flow paths within full-scale HSSF CWs. Discrepancy between methods (either in magnitude and pattern) aroused from the vertical hydraulic conductivity profiles under highly clogged conditions. It is believed this can be attributed to procedural differences between the methods, such as the method of permeameter insertion (twisting versus hammering). Results from both methods suggest that clogging develops along the shortest distance between water input and output. Results also evidence that the design and maintenance of inlet distributors and outlet collectors appear to have a great influence on the pattern of clogging, and hence the asset lifetime of HSSF CWs. © Springer Science+Business Media B.V. 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews the state of the art in measuring, modeling, and managing clogging in subsurface-flow treatment wetlands. Methods for measuring in situ hydraulic conductivity in treatment wetlands are now available, which provide valuable insight into assessing and evaluating the extent of clogging. These results, paired with the information from more traditional approaches (e.g., tracer testing and composition of the clog matter) are being incorporated into the latest treatment wetland models. Recent finite element analysis models can now simulate clogging development in subsurface-flow treatment wetlands with reasonable accuracy. Various management strategies have been developed to extend the life of clogged treatment wetlands, including gravel excavation and/or washing, chemical treatment, and application of earthworms. These strategies are compared and available cost information is reported. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we demonstrate the potential of permanent magnet based magnetic resonance sensors to monitor and assess the extent of pore clogging in water filtration systems. The performance of the sensor was tested on artificially clogged gravel substrates and on gravel bed samples from constructed wetlands used to treat wastewater. Data indicate that the spin lattice relaxation time is linearly related to the hydraulic conductivity in such systems. In addition, within biologically active filters we demonstrate the ability to determine the relative ratio of biomass to abiotic solids, a measurement which is not possible using alternative techniques. © 2011 The Royal Society of Chemistry.