5 resultados para Hybrid Filter
em Aston University Research Archive
Resumo:
A hybrid passive-active damping solution with improved system stability margin and enhanced dynamic performance is proposed for high power grid interactive converters. In grid connected active rectifier/inverter application, line side LCL filter improves the high frequency attenuation and makes the converter compatible with the stringent grid power quality regulations. Passive damping though offers a simple and reliable solution but it reduces overall converter efficiency. Active damping solutions do not increase the system losses but can guarantee the stable operation up to a certain speed of dynamic response which is limited by the maximum bandwidth of the current controller. This paper examines this limit and introduces a concept of hybrid passive-active damping solution with improved stability margin and high dynamic performance for line side LCL filter based active rectifier/inverter applications. A detailed design, analysis of the hybrid approach and trade-off between system losses and dynamic performance in grid connected applications are reported. Simulation and experimental results from a 10 kVA prototype demonstrate the effectiveness of the proposed solution. An analytical study on system stability and dynamic response with the variations of various controller and passive filter parameters is presented.
Resumo:
Hybrid WDM/TDM enabled microstructure based optical fiber sensor network with large capacity is proposed. Assisted by Fabry-Perot filter, the demodulation system with high speed of 500Hz and high wavelength resolution less than 4.91pm is realized. © OSA 2015.
Resumo:
In this paper we proposed a demodulation scheme based on tunable FP filter for the WDM/FDM sensing system of the microstructure mentioned in the previous work. Simulation is done to prove the feasibility of demodulating the microstructure with the tunable FP filter. The experiments result showed high consistence with the simulation. And with the help of the high speed FPGA module and a high resolution AD/DA card, the system has achieved a very high resolution, up to 2.5 pm, and wavelength ranges 1520nm to 1590 nm.
Resumo:
This paper presents a forecasting technique for forward electricity/gas prices, one day ahead. This technique combines a Kalman filter (KF) and a generalised autoregressive conditional heteroschedasticity (GARCH) model (often used in financial forecasting). The GARCH model is used to compute next value of a time series. The KF updates parameters of the GARCH model when the new observation is available. This technique is applied to real data from the UK energy markets to evaluate its performance. The results show that the forecasting accuracy is improved significantly by using this hybrid model. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.
Resumo:
We report a refractive index (RI) and liquid level sensing system based on a hybrid grating structure comprising of a 45° and an 81° tilted fiber gratings (TFGs) that have been inscribed into a single mode fiber in series. In this structure, the 45°-TFG is used as a polarizer to filter out the transverse electric (TE) component and enable the 81°-TFG operating at single polarization for RI and level sensing. The experiment results show a lower temperature cross-sensitivity, only about 7.33 pm/°C, and a higher RI sensitivity, being around 180 nm/RIU at RI=1.345 and 926 nm/RIU at RI=1.412 region, which are significantly improved in comparison with long period fiber gratings. The hybrid grating structure has also been applied as a liquid level sensor, showing 3.06 dB/mm linear peak ratio sensitivity.