15 resultados para Human skin color Genetic aspects
em Aston University Research Archive
Resumo:
This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 µm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. Poor penetration of chlorhexidine into skin following 2-min and 30-min exposures to chlorhexidine was observed (0.157 ± 0.047 and 0.077 ± 0.015 µg/mg tissue within the top 100 µm), and levels of chlorhexidine were minimal at deeper skin depths (less than 0.002 µg/mg tissue below 300 µm). After 24 h of exposure, there was more chlorhexidine within the upper 100-µm sections (7.88 ± 1.37 µg/mg tissue); however, the levels remained low (less than 1 µg/mg tissue) at depths below 300 µm. There was no detectable penetration through the full-thickness skin. The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Background Chlorhexidine digluconate (CHG) is a widely used skin antiseptic, however it poorly penetrates the skin, limiting its efficacy against microorganisms residing beneath the surface layers of skin. The aim of the current study was to improve the delivery of chlorhexidine digluconate (CHG) when used as a skin antiseptic. Method Chlorhexidine was applied to the surface of donor skin and its penetration and retention under different conditions was evaluated. Skin penetration studies were performed on full-thickness donor human skin using a Franz diffusion cell system. Skin was exposed to 2% (w/v) CHG in various concentrations of eucalyptus oil (EO) and 70% (v/v) isopropyl alcohol (IPA). The concentration of CHG (µg/mg of skin) was determined to a skin depth of 1500 µm by high performance liquid chromatography (HPLC). Results The 2% (w/v) CHG penetration into the lower layers of skin was significantly enhanced in the presence of EO. Ten percent (v/v) EO in combination with 2% (w/v) CHG in 70% (v/v) IPA significantly increased the amount of CHG which penetrated into the skin within 2 min. Conclusion The delivery of CHG into the epidermis and dermis can be enhanced by combination with EO, which in turn may improve biocide.
Resumo:
Healthcare associated infections may arise from many sources, including patient?s own skin flora and the clinical environment, and inflict a significant burden within the health service. Adequate and effective skin antisepsis and surface disinfection are therefore essential factors in infection control. Current EPIC guidelines recommend 2 % chlorhexidine (CHG) in 70 % isopropyl alcohol (IPA) for skin antisepsis however poor penetration has been reported. Eucalyptus oil (EO) is a known permeation enhancer, producing synergistic antimicrobial activity when combined with CHG. In this current study, the antimicrobial efficacy of EO and its main constituent 1,8-cineole were assessed against a panel of clinically relevant microorganisms, alone and in combination with CHG. The superior antimicrobial efficacy of EO compared with 1,8-cineole, and synergistic effects with CHG against planktonic and biofilm cultures, confirmed its suitability for use in subsequent studies within this thesis. Impregnation of EO, CHG and IPA onto prototype hard surface disinfectant wipes demonstrated significantly improved efficacy compared with CHG/IPA wipes, with clear reductions in the time required to eliminate biofilms. Optimisation of the EO/CHG/IPA formulation resulted in the development of Euclean® wipes, with simulated-use and time kill studies confirming their ability to remove microbial surface contamination, prevent cross contamination and eliminate biofilms within 10 minutes. The employment of isothermal calorimetry provided additional information on the type and rate of antimicrobial activity possessed by Euclean® wipes. A clinical audit of the Euclean® wipes at Birmingham Children?s Hospital, Birmingham, U.K. revealed divided staff opinion, with the highest cited advantage and disadvantage concerning the odour. Finally, skin penetration and cell toxicity studies of EO/CHG biopatches and Euclean® solution developed during this study, revealed no permeation into human skin following biopatch application, and no significant toxicity. These current studies enhance the knowledge regarding EO and its potential applications.
Resumo:
Current evidence-based guidelines recommend that 2% (w/v) chlorhexidine digluconate (CHG), preferentially in 70% (v/v) isopropyl alcohol (IIPA), is used for skin antisepsis prior to incision of the skin. In this current study, the antimicrobial efficacy of CHG, six essential oils [tea tree oil (TTO), thymol, eucalyptus oil (EO), juniper oil, lavender oil and citronella] and novel benzylidenecarboxamidrazone and thiosemicarbazone compounds were determined against a panel of microorganisms commonly associated with skin infection (Staphylococcus epidermidis, S. aureus, meticillin-resistant S. aureus, Propionibacterium acnes, Acinetobacter spp., Pseudomonas aeruginosa and Candida albicans) The results demonstrated synergistic activity of CHG in combination with EO against biofilm cultures of S. epidermidis, with significantly reduced concentrations of CHG and EO required to inhibit biofilm growth compared to CHG or EO alone. Skin permeation of CHG was subsequently investigated using an in vitro human skin model (Franz cell) and the penetration profile was determined by serial sectioning of the full thickness human skin. Two percent (w/v) CHG in aqueous solution and in 70% (v/v) IPA demonstrated poor skin permeation; however, the skin permeation was significantly enhanced in combination with 5% - 50% (v/v) EO. Detectable levels of CHG did not permeate through full thickness skin in 24 h. Skin permeation of 2% (w/v) CHG in 70% (v/v) IPA in the presence of 10% (v/v) EO was subsequently studied. The results demonstrated a significantly enhanced skin penetration of CHG after a 2 min application, with CHG detected at significant levels to a depth of 600 m with CHG in combination with EO and IPA compared to 100 m with IPA alone. Combination antisepsis comprising CHG and EO may be beneficial for skin antisepsis prior to invasive procedures to reduce the number of microorganisms on and within the skin due to enhanced skin penetration of CHG and improved efficacy against S. epidermidis in a biofilm mode of growth.
Resumo:
Introduction: Tourette syndrome is a neurodevelopmental disorder characterized by multiple motor tics and at least one vocal/phonic tic. Clinical phenotypes show a wide variability, often incorporating behavioral symptoms. The exact pathophysiology of Tourette syndrome is unknown, however genetic vulnerability and alterations in dopaminergic neurotransmission have consistently been reported. Other biochemical pathways, including histaminergic neurotransmission, are likely to be involved but have received relatively little attention until recently. Areas covered: We conducted a systematic literature review focusing on the role of histaminergic neurotransmission and its pharmacological modulation in Tourette syndrome. We identified a number of relevant original studies published over the last five years, mainly focusing on genetic aspects. Expert opinion: There is converging evidence from recent studies supporting the hypothesis that histaminergic neurotransmission may play a role in the pathophysiology of Tourette syndrome. Most studies focused on the role of the histidine decarboxylase gene and the potential usefulness of histidine decarboxylase knockout mice as an experimental model for studying neurochemical function in Tourette syndrome. There have been no large scale studies assessing the use of histaminergic medications in the management of Tourette syndrome. This would be an important area for future research, with direct implications for the clinical management of selected phenotypes.
Resumo:
Reversed-pahse high-performance liquid chromatographic (HPLC) methods were developed for the assay of indomethacin, its decomposition products, ibuprofen and its (tetrahydro-2-furanyl)methyl-, (tetrahydro-2-(2H)pyranyl)methyl- and cyclohexylmethyl esters. The development and application of these HPLC systems were studied. A number of physico-chemical parameters that affect percutaneous absorption were investigated. The pKa values of indomethacin and ibuprofen were determined using the solubility method. Potentiometric titration and the Taft equation were also used for ibuprofen. The incorporation of ethanol or propylene glycol in the solvent resulted in an improvement in the aqueous solubility of these compounds. The partition coefficients were evaluated in order to establish the affinity of these drugs towards the stratum corneum. The stability of indomethacin and of ibuprofen esters were investigated and the effect of temperature and pH on the decomposition rates were studied. The effect of cetyltrimethylammonium bromide on the alkaline degradation of indomethacin was also followed. In the presence of alcohol, indomethacin alcoholysis was observed and the kinetics of decomposition were subjected to non-linear regression analysis and the rate constants for the various pathways were quantified. The non-isothermal, sufactant non-isoconcentration and non-isopH degradation of indomethacin were investigated. The analysis of the data was undertaken using NONISO, a BASIC computer program. The degradation profiles obtained from both non-iso and iso-kinetic studies show that there is close concordance in the results. The metabolic biotransformation of ibuprofen esters was followed using esterases from hog liver and rat skin homogenates. The results showed that the esters were very labile under these conditions. The presence of propylene glycol affected the rates of enzymic hydrolysis of the ester. The hydrolysis is modelled using an equation involving the dielectric constant of the medium. The percutaneous absorption of indomethacin and of ibuprofen and its esters was followed from solutions using an in vitro excised human skin model. The absorption profiles followed first order kinetics. The diffusion process was related to their solubility and to the human skin/solvent partition coefficient. The percutaneous absorption of two ibuprofen esters from suspensions in 20% propylene glycol-water were also followed through rat skin with only ibuprofen being detected in the receiver phase. The sensitivity of ibuprofen esters to enzymic hydrolysis compared to the chemical hydrolysis may prove valuable in the formulation of topical delivery systems.
Resumo:
Automated negotiation systems can do better than human being in many aspects, and thus are applied into many domains ranging from business to computer science. However, little work about automating negotiation of complex business contract has been done so far although it is a kind of the most important negotiation in business. In order to address this issue, in this paper we developed an automated system for this kind of negotiation. This system is based on the principled negotiation theory, which is the most effective method of negotiation in the domain of business. The system is developed as a knowledge-based one because a negotiating agent in business has to be economically intelligent and capable of making effective decisions based on business experiences and knowledge. Finally, the validity of the developed system is shown in a real negotiation scenario where on behalf of human users, the system successfully performed a negotiation of a complex business contract between a wholesaler and a retailer. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
This research thesis is concerned with the human factors aspects of industrial alarm systems within human supervisory control tasks. Typically such systems are located in central control rooms, and the information may be presented via visual display units. The thesis develops a human, rather than engineering, centred approach to the assessment, measurement and analysis of the situation. A human factors methodology was employed to investigate the human requirements through: interviews, questionnaires, observation and controlled experiments. Based on the analysis of current industrial alarm systems in a variety of domains (power generation, manufacturing and coronary care), it is suggested that often designers do not pay due considerations to the human requirements. It is suggested that most alarm systems have severe shortcomings in human factors terms. The interviews, questionnaire and observations led to the proposal of 'alarm initiated activities' as a framework for the research to proceed. The framework comprises of six main stages: observe, accept, analyse, investigate, correct and monitor. This framework served as a basis for laboratory research into alarm media. Under consideration were speech-based alarm displays and visual alarm displays. Non-speech auditory displays were the subject of a literature review. The findings suggest that care needs to be taken when selecting the alarm media. Ideally it should be chosen to support the task requirements of the operator, rather than being arbitrarily assigned. It was also indicated that there may be some interference between the alarm initiated activities and the alarm media, i.e. information that supports one particular stage of alarm handling may interfere with another.
Resumo:
The process of astrogliosis, or reactive gliosis, is a typical response of astrocytes to a wide range of physical and chemical injuries. The up-regulation of the astrocyte specific glial fibrillary acidic protein (GFAP) is a hallmark of reactive gliosis and is widely used as a marker to identify the response. In order to develop a reliable, sensitive and high throughput astrocyte toxicity assay that is more relevant to the human response than existing animal cell based models, the U251-MG, U373-MG and CCF-STTG 1 human astrocytoma cell lines were investigated for their ability to exhibit reactive-like changes following exposure to ethanol, chloroquine diphosphate, trimethyltin chloride and acrylamide. Cytotoxicity analysis showed that the astrocytic cells were generally more resistant to the cytotoxic effects of the agents than the SH-SY5Y neuroblastoma cells. Retinoic acid induced differentiation of the SH-SY5Y line was also seen to confer some degree of resistance to toxicant exposure, particularly in the case of ethanol. Using a cell based ELISA for GFAP together with concurrent assays for metabolic activity and cell number, each of the three cell lines responded to toxicant exposure by an increase in GFAP immunoreactivity (GFAP-IR), or by increased metabolic activity. Ethanol, chloroquine diphosphate, trimethyltin chloride and bacterial lipopolysaccharide all induced either GFAP or MTT increases depending upon the cell line, dose and exposure time. Preliminary investigations of additional aspects of astrocytic injury indicated that IL-6, but not TNF-α. or nitric oxide, is released following exposure to each of the compounds, with the exception of acrylamide. It is clear that these human astrocytoma cell lines are capable of responding to toxicant exposure in a manner typical of reactive gliosis and are therefore a valuable cellular model in the assessment of in vitro neurotoxicity.
Resumo:
The thesis investigates the relationship between the biomechanical properties of the anterior human sclera and cornea in vivo using Schiotz tonometry (ST), rebound tonometry (RBT, iCare) and the Ocular Response Analyser (ORA, Reichert). Significant differences in properties were found to occur between scleral quadrants. Structural correlates for the differences were examined using Partial Coherent Interferometry (IOLMaster, Zeiss), Optical Coherent tomography (Visante OCT), rotating Scheimpflug photography (Pentacam, Oculus) and 3-D Magnetic Resonance Imaging (MRI). Subject groups were employed that allowed investigation of variation pertaining to ethnicity and refractive error. One hundred thirty-five young adult subjects were drawn from three ethnic groups: British-White (BW), British-South-Asian (BSA) and Hong-Kong-Chinese (HKC) comprising non-myopes and myopes. Principal observations: ST demonstrated significant regional variation in scleral resistance a) with lowest levels at quadrant superior-temporal and highest at inferior-nasal; b) with distance from the limbus, anterior locations showing greater resistance. Variations in resistance using RBT were similar to those found with ST; however the predominantly myopic HKC group had a greater overall mean resistance when compared to the BW-BSA group. OCT-derived scleral thickness measurements indicated the sclera to be thinner superiorly than inferiorly. Thickness varied with distance from the corneolimbal junction, with a decline from 1 to 2 mm followed by a successive increase from 3 to 7 mm. ORA data varied with ethnicity and refractive status; whilst axial length (AL) was associated with corneal biometrics for BW-BSA individuals it was associated with IOP in the HKC individuals. Complex interrelationships were found between ORA Additional-Waveform-Parameters and biometric data provided by the Pentacam. OCT indicated ciliary muscle thickness to be greater in myopia and more directly linked to posterior ocular volume (from MRI) than AL. Temporal surface areas (SAs, from MRI) were significantly smaller than nasal SAs in myopic eyes; globe bulbosity (from MRI) was constant across quadrants.
Resumo:
The classic hypothesis of Livingstone and Hubel (1984, 1987) proposed two types of color pathways in primate visual cortex based on recordings from single cells: a segregated, modularpathway that signals color but provides little information about shape or form and a second pathway that signals color differences and so defines forms without the need to specify their colors. A major problem has been to reconcile this neurophysiological hypothesis with the behavioral data. A wealth of psychophysical studies has demonstrated that color vision has orientation-tuned responses and little impairment on form related tasks, but these have not revealed any direct evidence for nonoriented mechanisms. Here we use a psychophysical method of subthreshold summation across orthogonal orientations for isoluminant red-green gratings in monocular and dichoptic viewing conditions to differentiate between nonoriented and orientation-tuned responses to color contrast. We reveal nonoriented color responses at low spatial frequencies (0.25-0.375 c/deg) under monocular conditions changing to orientation-tuned responses at higher spatial frequencies (1.5 c/deg) and under binocular conditions. We suggest that two distinct pathways coexist in color vision at the behavioral level, revealed at different spatial scales: one is isotropic, monocular, and best equipped for the representation of surface color, and the other is orientation-tuned, binocular, and selective for shape and form. This advances our understanding of the organization of the neural pathways involved in human color vision and provides a strong link between neurophysiological and behavioral data. © 2013 ARVO.
Resumo:
The development and characterization of an enhanced composite skin substitute based on collagen and poly(e-caprolactone) are reported. Considering the features of excellent biocompatibility, easy-manipulated property and exempt from cross-linking related toxicity observed in the 1:20 biocomposites, skin substitutes were developed by seeding human single-donor keratinocytes and fibroblasts alone on both sides of the 1:20 biocomposite to allow for separation of two cell types and preserving cell signals transmission via micro-pores with a porosity of 28.8 ± 16.1 µm. The bi-layered skin substitute exhibited both differentiated epidermis and fibrous dermis in vitro. Less Keratinocyte Growth Factor production was measured in the co-cultured skin model compared to fibroblast alone condition indicating a favorable microenvironment for epidermal homeostasis. Moreover, fast wound closure, epidermal differentiation, and abundant dermal collagen deposition were observed in composite skin in vivo. In summary, the beneficial characteristics of the new skin substitutes exploited the potential for pharmaceutical screening and clinical application.