3 resultados para Human immunodeficiency virus infection (HIV)
em Aston University Research Archive
Resumo:
CD8+ cytotoxic T lymphocytes (CTLs) play an important role in containment of virus replication in primary human immunodeficiency virus (HIV) infection. HIV's ability to mutate to escape from CTL pressure is increasingly recognized; but comprehensive studies of escape from the CD8 T cell response in primary HIV infection are currently lacking. Here, we have fully characterized the primary CTL response to autologous virus Env, Gag, and Tat proteins in three patients, and investigated the extent, kinetics, and mechanisms of viral escape from epitope-specific components of the response. In all three individuals, we observed variation beginning within weeks of infection at epitope-containing sites in the viral quasispecies, which conferred escape by mechanisms including altered peptide presentation/recognition and altered antigen processing. The number of epitope-containing regions exhibiting evidence of early CTL escape ranged from 1 out of 21 in a subject who controlled viral replication effectively to 5 out of 7 in a subject who did not. Evaluation of the extent and kinetics of HIV-1 escape from >40 different epitope-specific CD8 T cell responses enabled analysis of factors determining escape and suggested that escape is restricted by costs to intrinsic viral fitness and by broad, codominant distribution of CTL-mediated pressure on viral replication.
Resumo:
The human immunodeficiency virus (HIV) kills more people worldwide than any other infectious disease. Approximately 42 million people, mostly in Africa and Asia, are currently infected with HIV (Figure 3.1), and 5 million new infections occur every year (AIDS Epidemic Update, 2002). It is estimated that 22 milIion people have died since the first clinical evidence of AIDS (acquired immunodeficiency syndrome) emerged in 1981 ('Mobilization for Microbicides' ~ The Rockfeller Foundation). HIV is generally transmitted in one of three ways: through unprotected sexual intercourse, blood-to-blood contact, and mother-to-child transmission. Once the virus has entered the body, it invades the cells of the immune system and initiates the production of new virus particles with concomitant destruction of the immune cells. As the number of immune cells in the body slowly declines, weight loss, debilitation, and eventually death occur due to opportunistic infections or cancers. Although AIDS is presently incurable, highly active antiretroviral therapy (HAART), where a cocktail of potent antiretroviral drugs are administered daily to HIV-positive patients to control the viral load, has resulted in dramatic reductions in HIV-related morbidity and mortality in the developed world
Resumo:
The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5' -untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5'-CCCCGGCAAGGAGGGG-3-'. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication.