3 resultados para Human Readable Text

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces a mechanism for generating a series of rules that characterize the money price relationship for the USA, defined as the relationship between the rate of growth of the money supply and inflation. Monetary component data is used to train a selection of candidate feedforward neural networks. The selected network is mined for rules, expressed in human-readable and machine-executable form. The rule and network accuracy are compared, and expert commentary is made on the readability and reliability of the extracted rule set. The ultimate goal of this research is to produce rules that meaningfully and accurately describe inflation in terms of the monetary component dataset.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper demonstrates a mechanism whereby rules can be extracted from a feedforward neural network trained to characterize the inflation "pass-through" problem in American monetary policy, defined as the relationship between changes in the growth rate(s) of individual commodities and the economy-wide rate of growth of consumer prices. Monthly price data are encoded and used to train a group of candidate connectionist architectures. One candidate is selected for rule extraction, using a custom decompositional extraction algorithm that generates rules in human-readable and machine-executable form. Rule and network accuracy are compared, and comments are made on the relationships expressed within the discovered rules. The types of discovered relationships could be used to guide monetary policy decisions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Existing parsers for textual model representation formats such as XMI and HUTN are unforgiving and fail upon even the smallest inconsistency between the structure and naming of metamodel elements and the contents of serialised models. In this paper, we demonstrate how a fuzzy parsing approach can transparently and automatically resolve a number of these inconsistencies, and how it can eventually turn XML into a human-readable and editable textual model representation format for particular classes of models.