23 resultados para Human Insulin Mutant
em Aston University Research Archive
Resumo:
Inhaled human insulin (Exubera®) is a rapid-acting regular human insulin administered by oral inhalation before meals. It provides a non-invasive alternative to multiple subcutaneous injections for the treatment of hyperglycemia in adult patients with type 1 and type 2 diabetes. Compared with subcutaneous rapid-acting insulin analogs, Exubera provides equivalent HbA1c control. As a monotherapy or in combination with oral agents, Exubera also provides greater glycemic control than oral agents alone, at least in patients with high levels of HbA1c. Exubera demonstrates improved patient satisfaction compared with subcutaneous insulin or oral agents alone. When offered as a treatment option together with standard treatments in uncontrolled patients naive to insulin, Exubera increases acceptance of insulin therapy three-fold compared with patients offered standard regimens only. Exubera is well tolerated in comparison to subcutaneous insulin, with a similar incidence of mild to moderate hypoglycemia. Although cough is a common adverse effect early in therapy, this leads to treatment discontinuations in less than 1% of patients. Despite an increased incidence of insulin antibodies compared with subcutaneous administration, and a consistent but minor impact on pulmonary function, long-term safety data of up to 4 years continue to support the safety profile of Exubera.
Resumo:
Full text: The idea of producing proteins from recombinant DNA hatched almost half a century ago. In his PhD thesis, Peter Lobban foresaw the prospect of inserting foreign DNA (from any source, including mammalian cells) into the genome of a λ phage in order to detect and recover protein products from Escherichia coli [ 1 and 2]. Only a few years later, in 1977, Herbert Boyer and his colleagues succeeded in the first ever expression of a peptide-coding gene in E. coli — they produced recombinant somatostatin [ 3] followed shortly after by human insulin. The field has advanced enormously since those early days and today recombinant proteins have become indispensable in advancing research and development in all fields of the life sciences. Structural biology, in particular, has benefitted tremendously from recombinant protein biotechnology, and an overwhelming proportion of the entries in the Protein Data Bank (PDB) are based on heterologously expressed proteins. Nonetheless, synthesizing, purifying and stabilizing recombinant proteins can still be thoroughly challenging. For example, the soluble proteome is organized to a large part into multicomponent complexes (in humans often comprising ten or more subunits), posing critical challenges for recombinant production. A third of all proteins in cells are located in the membrane, and pose special challenges that require a more bespoke approach. Recent advances may now mean that even these most recalcitrant of proteins could become tenable structural biology targets on a more routine basis. In this special issue, we examine progress in key areas that suggests this is indeed the case. Our first contribution examines the importance of understanding quality control in the host cell during recombinant protein production, and pays particular attention to the synthesis of recombinant membrane proteins. A major challenge faced by any host cell factory is the balance it must strike between its own requirements for growth and the fact that its cellular machinery has essentially been hijacked by an expression construct. In this context, Bill and von der Haar examine emerging insights into the role of the dependent pathways of translation and protein folding in defining high-yielding recombinant membrane protein production experiments for the common prokaryotic and eukaryotic expression hosts. Rather than acting as isolated entities, many membrane proteins form complexes to carry out their functions. To understand their biological mechanisms, it is essential to study the molecular structure of the intact membrane protein assemblies. Recombinant production of membrane protein complexes is still a formidable, at times insurmountable, challenge. In these cases, extraction from natural sources is the only option to prepare samples for structural and functional studies. Zorman and co-workers, in our second contribution, provide an overview of recent advances in the production of multi-subunit membrane protein complexes and highlight recent achievements in membrane protein structural research brought about by state-of-the-art near-atomic resolution cryo-electron microscopy techniques. E. coli has been the dominant host cell for recombinant protein production. Nonetheless, eukaryotic expression systems, including yeasts, insect cells and mammalian cells, are increasingly gaining prominence in the field. The yeast species Pichia pastoris, is a well-established recombinant expression system for a number of applications, including the production of a range of different membrane proteins. Byrne reviews high-resolution structures that have been determined using this methylotroph as an expression host. Although it is not yet clear why P. pastoris is suited to producing such a wide range of membrane proteins, its ease of use and the availability of diverse tools that can be readily implemented in standard bioscience laboratories mean that it is likely to become an increasingly popular option in structural biology pipelines. The contribution by Columbus concludes the membrane protein section of this volume. In her overview of post-expression strategies, Columbus surveys the four most common biochemical approaches for the structural investigation of membrane proteins. Limited proteolysis has successfully aided structure determination of membrane proteins in many cases. Deglycosylation of membrane proteins following production and purification analysis has also facilitated membrane protein structure analysis. Moreover, chemical modifications, such as lysine methylation and cysteine alkylation, have proven their worth to facilitate crystallization of membrane proteins, as well as NMR investigations of membrane protein conformational sampling. Together these approaches have greatly facilitated the structure determination of more than 40 membrane proteins to date. It may be an advantage to produce a target protein in mammalian cells, especially if authentic post-translational modifications such as glycosylation are required for proper activity. Chinese Hamster Ovary (CHO) cells and Human Embryonic Kidney (HEK) 293 cell lines have emerged as excellent hosts for heterologous production. The generation of stable cell-lines is often an aspiration for synthesizing proteins expressed in mammalian cells, in particular if high volumetric yields are to be achieved. In his report, Buessow surveys recent structures of proteins produced using stable mammalian cells and summarizes both well-established and novel approaches to facilitate stable cell-line generation for structural biology applications. The ambition of many biologists is to observe a protein's structure in the native environment of the cell itself. Until recently, this seemed to be more of a dream than a reality. Advances in nuclear magnetic resonance (NMR) spectroscopy techniques, however, have now made possible the observation of mechanistic events at the molecular level of protein structure. Smith and colleagues, in an exciting contribution, review emerging ‘in-cell NMR’ techniques that demonstrate the potential to monitor biological activities by NMR in real time in native physiological environments. A current drawback of NMR as a structure determination tool derives from size limitations of the molecule under investigation and the structures of large proteins and their complexes are therefore typically intractable by NMR. A solution to this challenge is the use of selective isotope labeling of the target protein, which results in a marked reduction of the complexity of NMR spectra and allows dynamic processes even in very large proteins and even ribosomes to be investigated. Kerfah and co-workers introduce methyl-specific isotopic labeling as a molecular tool-box, and review its applications to the solution NMR analysis of large proteins. Tyagi and Lemke next examine single-molecule FRET and crosslinking following the co-translational incorporation of non-canonical amino acids (ncAAs); the goal here is to move beyond static snap-shots of proteins and their complexes and to observe them as dynamic entities. The encoding of ncAAs through codon-suppression technology allows biomolecules to be investigated with diverse structural biology methods. In their article, Tyagi and Lemke discuss these approaches and speculate on the design of improved host organisms for ‘integrative structural biology research’. Our volume concludes with two contributions that resolve particular bottlenecks in the protein structure determination pipeline. The contribution by Crepin and co-workers introduces the concept of polyproteins in contemporary structural biology. Polyproteins are widespread in nature. They represent long polypeptide chains in which individual smaller proteins with different biological function are covalently linked together. Highly specific proteases then tailor the polyprotein into its constituent proteins. Many viruses use polyproteins as a means of organizing their proteome. The concept of polyproteins has now been exploited successfully to produce hitherto inaccessible recombinant protein complexes. For instance, by means of a self-processing synthetic polyprotein, the influenza polymerase, a high-value drug target that had remained elusive for decades, has been produced, and its high-resolution structure determined. In the contribution by Desmyter and co-workers, a further, often imposing, bottleneck in high-resolution protein structure determination is addressed: The requirement to form stable three-dimensional crystal lattices that diffract incident X-ray radiation to high resolution. Nanobodies have proven to be uniquely useful as crystallization chaperones, to coax challenging targets into suitable crystal lattices. Desmyter and co-workers review the generation of nanobodies by immunization, and highlight the application of this powerful technology to the crystallography of important protein specimens including G protein-coupled receptors (GPCRs). Recombinant protein production has come a long way since Peter Lobban's hypothesis in the late 1960s, with recombinant proteins now a dominant force in structural biology. The contributions in this volume showcase an impressive array of inventive approaches that are being developed and implemented, ever increasing the scope of recombinant technology to facilitate the determination of elusive protein structures. Powerful new methods from synthetic biology are further accelerating progress. Structure determination is now reaching into the living cell with the ultimate goal of observing functional molecular architectures in action in their native physiological environment. We anticipate that even the most challenging protein assemblies will be tackled by recombinant technology in the near future.
Resumo:
Aims/hypothesis - Loss of the trophic support provided by surrounding non-endocrine pancreatic cell populations underlies the decline in beta cell mass and insulin secretory function observed in human islets following isolation and culture. This study sought to determine whether restoration of regulatory influences mediated by ductal epithelial cells promotes sustained beta cell function in vitro. Methods - Human islets were isolated according to existing protocols. Ductal epithelial cells were harvested from the exocrine tissue remaining after islet isolation, expanded in monolayer culture and characterised using fluorescence immunocytochemistry. The two cell types were co-cultured under conventional static culture conditions or within a rotational cell culture system. The effect of co-culture on islet structural integrity, beta cell mass and insulin secretory capacity was observed for 10 days following isolation. Results - Human islets maintained under conventional culture conditions exhibited a characteristic loss in structural integrity and functional viability as indicated by a diminution of glucose responsiveness. By contrast, co-culture of islets with ductal epithelial cells led to preserved islet morphology and sustained beta cell function, most evident in co-cultures held within the rotational cell culture system, which showed a significantly (p<0.05) greater insulin secretory response to elevated glucose compared with control islets. Similarly, insulin/protein ratio data suggested that the presence of ductal epithelial cells is beneficial for the maintenance of beta cell mass. Conclusions/interpretation - The data indicate a supportive role for ductal epithelial cells in islet viability. Further characterisation of the regulatory influences may lead to novel strategies to improve long-term beta cell function both in vitro and following islet transplantation.
Resumo:
Obesity and insulin resistance are important risk factors for atherosclerosis, and elevated level of plasma NEFA is a common feature in individuals with obesity and insulin resistance. Palmitate, one of the most abundant non-esterified SFA in plasma, has been reported to induce insulin resistance in adipose tissues and skeletal muscles and to cause an increased inflammatory response in monocytes. The present study investigated whether palmitate can induce insulin resistance in monocytes and its effect on monocyte adhesion molecular expression (CD11b). Insulin resistance was measured by in vitro uptake of insulin-stimulated 3H-labelled 2-deoxy-D-glucose into THP-1 cells, cell surface CD11b expression was measured by flow cytometry. The data showed that palmitate-induced insulin resistance in THP-1 monocytes was concentration and time dependent (Figure 1). The insulin-stimulated glucose uptake was significantly decreased in cells treated with 300 mM-palmitate compared with control cells (P<0.001) and was observed within 6 h, but was not a result of palmitate toxicity. There was no significant increase in caspase 3 activation (P>0.05). Treatment with 300 mM-palmitate for 24 h also caused a significant increase in surface CD11b expression in both U937 and THP-1 monocytic cell lines and human primary monocytes compared with the control (P<0.001). Both these effects were inhibited by co-incubation with Fumonisin B1, an inhibitor of de novo ceramide synthesis. In conclusion, these data show that palmitate, at physiological concentrations, can cause insulin resistance in monocytes and increase monocyte surface integrin CD11b expression, which is in part the result of the synthesis of ceramide.
Resumo:
Nesfatin-1 is a recently identified anorexigenic peptide derived from its precursor protein, nonesterified fatty acid/nucleobindin 2 (NUCB2). Although the hypothalamus is pivotal for the maintenance of energy homeostasis, adipose tissue plays an important role in the integration of metabolic activity and energy balance by communicating with peripheral organs and the brain via adipokines. Currently no data exist on nesfatin-1 expression, regulation, and secretion in adipose tissue. We therefore investigated NUCB2/nesfatin-1 gene and protein expression in human and murine adipose tissue depots. Additionally, the effects of insulin, dexamethasone, and inflammatory cytokines and the impact of food deprivation and obesity on nesfatin-1 expression were studied by quantitative RT-PCR and Western blotting. We present data showing NUCB2 mRNA (P < 0.001), nesfatin-1 intracellular protein (P < 0.001), and secretion (P < 0.01) were significantly higher in sc adipose tissue compared with other depots. Also, nesfatin-1 protein expression was significantly increased in high-fat-fed mice (P < 0.01) and reduced under food deprivation (P < 0.01) compared with controls. Stimulation of sc adipose tissue explants with inflammatory cytokines (TNFa and IL-6), insulin, and dexamethasone resulted in a marked increase in intracellular nesfatin-1 levels. Furthermore, we present evidence that the secretion of nesfatin-1 into the culture media was dramatically increased during the differentiation of 3T3-L1 preadipocytes into adipocytes (P < 0.001) and after treatments with TNF-a, IL-6, insulin, and dexamethasone (P < 0.01). In addition, circulating nesfatin-1 levels were higher in high-fat-fed mice (P < 0.05) and showed positive correlation with body mass index in human. We report that nesfatin-1 is a novel depot specific adipokine preferentially produced by sc tissue, with obesity- and food deprivation-regulated expression.
Resumo:
Cervical compressive myelopathy is the most serious complication of cervical spondylosis or ossification of the posterior longitudinal ligament (OPLL) and the most frequent cause of spinal cord dysfunction. There is little information on the exact pathophysiological mechanism responsible for the progressive loss of neural tissue in the spinal cord of such patients. In this study, we used the spinal hyperostotic mouse (twy/twy) as a suitable model of human spondylosis, and OPLL to investigate the cellular and molecular changes in the spinal cord. Mutant twy/twy mouse developed ossification of the ligamentum flavum at C2-C3 and exhibited progressive paralysis.
Resumo:
Chronic systemic immunosuppression in cell replacement therapy restricts its clinical application. This study sought to explore the potential of cell-based immune modulation as an alternative to immunosuppressive drug therapy in the context of pancreatic islet transplantation. Human amniotic epithelial cells (AEC) possess innate anti-inflammatory and immunosuppressive properties that were utilized to create localized immune privilege in an in vitro islet cell culture system. Cellular constructs composed of human islets and AEC (islet/AEC) were bioengineered under defined rotational cell culture conditions. Insulin secretory capacity was validated by glucose challenge and immunomodulatory potential characterized using a peripheral blood lymphocyte (PBL) proliferation assay. Results were compared to control constructs composed of islets or AEC cultured alone. Studies employing AEC-conditioned medium examined the role of soluble factors, and fluorescence immunocytochemistry was used to identify putative mediators of the immunosuppressive response in isolated AEC monocultures. Sustained, physiologically appropriate insulin secretion was observed in both islets and islet/AEC constructs. Activation of resting PBL proliferation occurred on exposure to human islets alone but this response was significantly (p <0.05) attenuated by the presence of AEC and AEC-conditioned medium. Mitogen (phytohaemagglutinin, 5 µg/ml)-induced PBL proliferation was sustained on contact with isolated islets but abrogated by AEC, conditioned medium, and the islet/AEC constructs. Immunocytochemical analysis of AEC monocultures identified a subpopulation of cells that expressed the proapoptosis protein Fas ligand. This study demonstrates that human islet/AEC constructs exhibit localized immunosuppressive properties with no impairment of ß-cell function. The data suggest that transplanted islets may benefit from the immune privilege status conferred on them as a consequence of their close proximity to human AEC. Such an approach may reduce the need for chronic systemic immunosuppression, thus making islet transplantation a more attractive treatment option for the management of insulin-dependent diabetes.
Resumo:
The region of tenascin-C containing only alternately spliced fibronectin type-III repeat D (fnD) increases neurite outgrowth by itself and also as part of tenascin-C. We previously localized the active site within fnD to an eight amino acid sequence unique to tenascin-C, VFDNFVLK, and showed that the amino acids FD and FV are required for activity. The purpose of this study was to identify the neuronal receptor that interacts with VFDNFVLK and to investigate the hypothesis that FD and FV are important for receptor binding. Function-blocking antibodies against both alpha7 and beta1 integrin subunits were found to abolish VFDNFVLK-mediated process extension from cerebellar granule neurons. VFDNFVLK but not its mutant, VSPNGSLK, induced clustering of neuronal beta1 integrin immunoreactivity. This strongly implicates FD and FV as important structural elements for receptor activation. Moreover, biochemical experiments revealed an association of the alpha7beta1 integrin with tenascin-C peptides containing the VFDNFVLK sequence but not with peptides with alterations in FD and/or FV. These findings are the first to provide evidence that the alpha7beta1 integrin mediates a response to tenascin-C and the first to demonstrate a functional role for the alpha7beta1 integrin receptor in CNS neurons.
Resumo:
Adrenomedullin (AM) and amylin are involved in angiogenesis/lymphangiogenesis and glucose homeostasis/food intake, respectively. They activate receptor activity-modifying protein (RAMP)/G protein-coupled receptor (GPCR) complexes. RAMP3 with the calcitonin receptor-like receptor (CLR) forms the AM(2) receptor, whereas when paired with the calcitonin receptor AMY(3) receptors are formed. RAMP3 interacts with other GPCRs although the consequences of these interactions are poorly understood. Therefore, variations in the RAMP3 sequence, such as single nucleotide polymorphisms or mutations could be relevant to human health. Variants of RAMP3 have been identified. In particular, analysis of AK222469 (Homo sapiens mRNA for receptor (calcitonin) activity-modifying protein 3 precursor variant) revealed several nucleotide differences, three of which encoded amino acid changes (Cys40Trp, Phe100Ser, Leu147Pro). Trp56Arg RAMP3 is a polymorphic variant of human RAMP3 at a conserved amino acid position. To determine their function we used wild-type (WT) human RAMP3 as a template for introducing amino acid mutations. Mutant or WT RAMP3 function was determined in Cos-7 cells with CLR or the calcitonin receptor (CT((a))). Cys40Trp/Phe100Ser/Leu147Pro RAMP3 was functionally compromised, with reduced AM and amylin potency at the respective AM(2) and AMY(3(a)) receptor complexes. Cys40Trp and Phe100Ser mutations contributed to this phenotype, unlike Leu147Pro. Reduced cell-surface expression of mutant receptor complexes probably explains the functional data. In contrast, Trp56Arg RAMP3 was WT in phenotype. This study provides insight into the role of these residues in RAMP3. The existence of AK222469 in the human population has implications for the function of RAMP3/GPCR complexes, particularly AM and amylin receptors.
Resumo:
Type 2 diabetes is an insidious disorder, with micro and/or macrovascular and nervous damage occurring in many patients before diagnosis. This damage is caused by hyperglycaemia and the diverse effects of insulin resistance. Obesity, in particular central obesity, is a strong pre-disposing factor for type 2 diabetes. Skeletal muscle is the main site of insulin-stimulated glucose disposal and appears to be the first organ that becomes insulin resistant in the diabetic state, with later involvement of adipose tissue and the liver. This study has investigated the use of novel agents to ameliorate insulin-resistance in skeletal muscle as a means of identifying intervention sites against insulin resistance and of improving glucose uptake and metabolism by skeletal muscle. Glucose uptake was measured in vitro by cultured L6 myocytes and isolated muscles from normal and obese diabetic ob/ob mice, using either the tritiated non-metabolised glucose analogue 2-deoxy-D-glucose or by glucose disposal. Agents studied included lipoic acid, isoferulic acid, bradykinin, lipid mobilising factor (provisionally synonymous with Zinca2 glycoprotein) and the trace elements lithium, selenium and chromium. The putative role of TNFa in insulin resistance was also investigated. Lipoic acid improved insulin-stimulated glucose uptake in normal and insulin resistance murine muscles, as well as cultured myocytes. Isoferulic acid, bradykinin and LMF also produced a transient increase in glucose uptake in cultured myocytes. Physiological concentrations of TNFa were found to cause insulin resistance in cultured, but no in excised murine muscles. The effect of the M2 metabolite of the satiety-inducing agent sibutramine on lipolysis in excised murine and human adipocytes was also investigated. M2 increased lipolysis from normal lean and obese ob/ob mouse adipocytes. Arguably the most important observation was that M2 also increased the lipolytic rate in adipocytes from catecholamine resistant obese subjects. The studies reported in this thesis indicate that a diversity of agents can improve glucose uptake and ameliorate insulin resistance. It is likely that these agents are acting via different pathways. This thesis has also shown that M2 can induce lipolysis in both rodent and human adipocytes. M2 hence has potential to directly reduce adiposity, in addition to well documented effects via the central nervous system.
Resumo:
Currently available treatments for insulin-dependent diabetes mellitus are often inadequate in terms of both efficacy and patient compliance. Gene therapy offers the possibility of a novel and improved method by which exogenous insulin can be delivered to a patient. This was approached in the present study by constructing a novel insulin-secreting cell line. For the purposes of this work immortalized cell lines were used. Fibroblasts and pituitary cells were transfected with the human preproisinulin gene to create stable lines of proinsulin- and insulin-secreting cells. The effect of known β-cell secretagogues on these cells were investigated, and found mostly to have no stimulatory effect, although IBMX, arginine and ZnSO4 each increased the rate of secretion. Cyclosporin (CyA) is currently the immunosuppresant of choice for transplant recipients; the effect of this treatment on endogenous β-cell function was assessed both in vivo and in vitro. Therapeutic doses of CyA were found to reduce plasma insulin concentrations and to impair glucose tolerance. The effect of immunoisolation on insulin release by HIT T15 cells was also investigated. The presence of an alginate membrane was found to severely impair insulin release. For the first implantation of the insulin-secreting cells, the animal model selected was the athymic nude mouse. This animal is immunoincompetent, and hence the use of an immunosuppressive regimen is circumvented. Graft function was assessed by measurement of plasma human C peptide concentrations, using a highly specific assay. Intraperitoneal implantation of genetically manipulated insulin-secreting pituitary cells into nude mice subsequently treated with a large dose of streptozotocin (STZ) resulted in a significantly delayed onset of hyperglycaemia when compared to control animals. Consumption of a ZnSO4 solution was shown to increase human C peptide release by the implant. Ensuing studies in nude mice examined the efficacy of different implantation sites, and included histochemical examination of the tumours. Aldehyde fuchsin staining and immunocytochemical processing demonstrated the presence of insulin containing cells within the excised tissue. Following initial investigations in nude mice, implantation studies were performed in CyA-immunosuppressed normal and STZ-diabetic mice. Graft function was found to be less efficacious, possibly due to the subcutaneous implantation site, or to the immunosuppresive regimen. Histochemical and transmission electron microscopic analysis of the tumour-like cell clusters found at autopsy revealed necrosis of cells at the core, but essentially normal cell morphology, with dense secretory granules in peripheral cells. The thesis provides evidence that gene therapy offers a feasibly new approach to insulin delivery.
Resumo:
Established RlNm5F and lN111 R1 and newly available HlT-T15 and UMR 407/3 B-cell lines have been successfully maintained in vitro. With the exclusion of UMR 407/3 cells, all lines were continuously propagable. Doubling times and plating efficiencies for HlT-T15, RlNm5F, lN111 R1 and UMR 407/3 cells were 20 hours and 85%, 31 hours and 76%, 24 hours and 80% and 38 hours and 94% respectively. All the cell lines were anchorage dependent, but only UMR 407/3 cells grew to confluence. Only HlT-T15 and UMR 407/3 cells produced a true insulin response to glucose but glucose markedly increased the rate of D-[U14C]glucose oxidation by all the cell lines. Glucose induced insulin release from HlT-T15 cells was biphasic with an exaggerated first phase. Insulin release from HlT-T15, RlNm5F and IN111 R1 cells was stimulated by amino acids and sulphonylureas. Glucagon stimulated insulin release from HlT-T15 and RlNm5F cells while somatostatin and pancreatic polypeptide inhibited release. These observations suggest that net insulin release from the whole islet may be the result of significant paracrine interaction. HlT-T15 and RlNm5F cell insulin release was stimulated by forskolin and inhibited by imidazole. Ca2+ channel blockade and calmodulin inhibition suppressed insulin release from HlT-T15, RlNm5F and IN111 R1 cells. In addition phorbol esters stimulated insulin release from RlNm5F cells. These data implicate cAMP, Ca2+ and protein kinase-C in the regulation of insulin release from cultured B-cells. Acetylcholine increased insulin release from HlT-T15 and RlNm5F cells. Inhibition of the response by atropine confirmed the involvement of muscarinic receptors. HlT-T15 cell insulin release was also inhibited by adrenaline. These observations suggest a possible role for the autonomic nervous system in the modulation of insulin release. Preliminary studies with a human insulinoma maintained in monolayer culture have demonstrated a limited life span of some seven weeks, a continuous low level of insulin release but no insulin response to glucose challenge.
Resumo:
The receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are complexes of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMP). The CGRP receptor is a CLR/RAMP1 pairing whereas CLR/RAMP2 and CLR/RAMP3 constitute two subtypes of AM receptor: AM(1) and AM(2), respectively. Previous studies identified Glu74 in RAMP3 to be important for AM binding and potency. To further understand the importance of this residue and its equivalent in RAMP1 (Trp74) we substituted the native amino acids with several others. In RAMP3, these were Trp, Phe, Tyr, Ala, Ser, Thr, Arg and Asn; in RAMP1, Glu, Phe, Tyr, Ala and Asn substitutions were made. The mutant RAMPs were co-expressed with CLR in Cos7 cells; receptor function in response to AM, AM(2)/intermedin and CGRP was measured in a cAMP assay and cell surface expression was determined by ELISA. Phe reduced AM potency in RAMP3 but had no effect in RAMP1. In contrast, Tyr had no effect in RAMP3 but enhanced AM potency in RAMP1. Most other substitutions had a small effect on AM potency in both receptors whereas there was little impact on CGRP or AM(2) potency. Overall, these data suggest that the geometry and charge of the residue at position 74 contribute to how AM interacts with the AM(2) and CGRP receptors and confirms the role of this position in dictating differential AM pharmacology at the AM(2) and CGRP receptors.
Resumo:
Aim: Delayed graft revascularization impedes the success of human islet transplantation. This study utilized rotational co-culture of insulin secreting ß-cells with human umbilical vein endothelial cells (HUVECs) and a peroxisome proliferator-activated receptor gamma (PPAR-?) agonist to promote insulin and vascular endothelial growth factor (VEGF) secretory function. Methods: Clonal BRIN-BD11 (D11) cells were maintained in static culture (SC) and rotational culture (RC) ± HUVEC and ± the TZD (thiazolidinedione) rosiglitazone (10 mmol/l) as a specific PPAR-? agonist. HUVECs were cultured in SC and RC ± D11 and ± TZD. D11 insulin secretion was induced by static incubation with low glucose (1.67 mmol/l), high glucose (16.7 mmol/l) and high glucose with 10 mmol/l theophylline (G+T) and assessed by enzyme-linked immunosorbent assay (ELISA). HUVEC proliferation was determined by ATP luminescence, whereas VEGF secretion was quantified by ELISA. Co-cultured cells were characterized by immunostaining for insulin and CD31. Results: D11 SC and RC showed enhanced insulin secretion in response to 16.7 mmol/l and G+T (p <0.01); without significant alteration by the TZD. Co-culture with HUVEC in SC and RC also increased D11 insulin secretion when challenged with 16.7 mmol/l and G+T (p <0.01), and this was slightly enhanced by the TZD. The presence of HUVEC increased D11 SC and RC insulin secretion in response to high glucose and G+T, respectively (p <0.01). Addition of the TZD increased SC and RC HUVEC ATP content (p <0.01) and VEGF production (p <0.01) in the presence and absence of D11 cells. Conclusions: Rotational co-culture of insulin secreting cells with endothelial cells, and exposure to a PPAR-? agonist may improve the prospects for graft revascularization and function after implantation. © 2011 Blackwell Publishing Ltd.
Resumo:
Human islet transplant success is partially impaired by slow revascularisation. Our study investigated the potential for rotational cell culture (RC) of human islets combined with thiazolidinedione (TZD) stimulation of peroxisome proliferator-activated receptor gamma (PPAR?) to upregulate vascular endothelial growth factor (VEGF) expression in the islets. Four groups of human islets were studied: static culture (SC) with and without 25 mmol/L TZD and RC with and without 25 mmol/L TZD. These were assessed for insulin secretion and soluble VEGF-A release. Both proteins were quantified by enzyme-linked immunosorbent assay (ELISA), supported with qualitative immunofluorescence staining. RC + TZD increased insulin secretion by >20% (p <0.05-0.001) in response to 16.7 mmol/L glucose and 16.7 mmol/L glucose + 10 mmol/L theophylline (G + T). This effect was seen at all time intervals compared with SC and without addition of TZD. Soluble VEGF-A release was significantly augmented by RC and TZD exposure with an increased effect of >30% (p <0.001) at 72 h under both SC and RC conditions. RC supplemented with a TZD enhances and prolongs the release of insulin and soluble VEGF-A by isolated human islets. © 2013 The Author(s).