7 resultados para Hot-plate test
em Aston University Research Archive
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
In Thailand, the leaves of Aquilaria crassna have been used traditionally for the treatments of various disorders, but without any scientific analysis. In this study, the antipyretic, analgesic, anti-inflammatory and anti-oxidative properties of A. crassna leaves extract were investigated at a wide dose range in rodents. Experimental animals were treated orally with an aqueous extract of Aquilaria crassna leaves (ACE). They were tested for antipyretic (Baker′s yeast-induced fever in rats), analgesic (hot plate test in mice) and anti-inflammatory (carrageenan-induced paw edema in rats) activities. An anti-oxidative effect of ACE was evaluated by using the DPPH anti-oxidant assay. The results showed that, after 5 hours of yeast injection, 400 and 800 mg/kg ACE significantly reduced the rectal temperature of rats. Mice were found significantly less sensitive to heat at an oral dose of 800 mg/kg ACE, after 60 and 90 min. No anti-inflammatory activity of ACE at an 800 mg/kg dose could be observed in the rat paw assay. An anti-oxidative activity of ACE was observed with an IC 50 value of 47.18 g/ ml. No behavioral or movement change could be observed in mice after oral administration of ACE (800 or 8,000 mg/kg) for seven consecutive days. Interestingly, from the second day of treatment, animals had a significant lower body weight at the 8,000 mg/kg dose of ACE compared to the control. No toxicity was identified and the results of this study state clearly that Aquilaria crassna leaves extracts possess antipyretic, analgesic and anti-oxidative properties without anti-inflammatory activity.
Resumo:
The development of cobalt molybdenum and cobalt tungsten brush plating electrolytes is described. Their optimum compositions and operating conditions for commercial applications have been determined. The effects of composition, pH, applied voltage, stylus speed and pressure upon deposit composition and efficiency have been investigated. Transmission and Scanning Electron Microscopy have been employed to study the cobalt alloy deposits produced. Evaluation of the wear resistant properties of the cobalt alloys developed in this work was carried out in the laboratory using a pin and disc technique and a simulated hot forging test, and by industrial trials involving the "on site" plating of hot forging dies and cold pressing tools. It was concluded that the electrolytes developed in tl1is work enabled cobalt alloys containing 6% Mo or 8% W to be deposited at 17-20V. Brush plated cobalt deposits possessed a mixed CPU and FCC crystallographic structure at room temperature. The application of 13µm of either of the cobalt alloys resulted in improved wear performance in both pin and disc and simulated hot forging tests. The results of the industrial trials indicated that by the use of these alloys, the life of hot forging dies may be increased by 20-100%. A commercial forging organisation is using electrolytes developed in this work to coat dies prior to forging nimonic alloys. Reductions in forging temperature and improved forging qualities have been reported. Cold pressing tools coated with the alloys showed a reduced tendency to "pick-up" and scoring of the pressed panels. Reports of a reduced need for lubrication of panels before pressing have also been received.
Resumo:
The object of this work was to further develop the idea introduced by Muaddi et al (1981) which enables some of the disadvantages of earlier destructive adhesion test methods to be overcome. The test is non-destructive in nature but it does need to be calibrated against a destructive method. Adhesion is determined by measuring the effect of plating on internal friction. This is achieved by determining the damping of vibrations of a resonating specimen before and after plating. The level of adhesion was considered by the above authors to influence the degree of damping. In the major portion of the research work the electrodeposited metal was Watt's nickel, which is ductile in nature and is therefore suitable for peel adhesion testing. The base metals chosen were aluminium alloys S1C and HE9 as it is relatively easy to produce varying levels of adhesion between the substrate and electrodeposited coating by choosing the appropriate process sequence. S1C alloy is the commercially pure aluminium and was used to produce good adhesion. HE9 aluminium alloy is a more difficult to plate alloy and was chosen to produce poorer adhesion. The "Modal Testing" method used for studying vibrations was investigated as a possible means of evaluating adhesion but was not successful and so research was concentrated on the "Q" meter. The method based on the use of a "Q" meter involves the principle of exciting vibrations in a sample, interrupting the driving signal and counting the number of oscillations of the freely decaying vibrations between two known preselected amplitudes of oscillations. It was not possible to reconstruct a working instrument using Muaddi's thesis (1982) as it had either a serious error or the information was incomplete. Hence a modified "Q" meter had to be designed and constructed but it was then difficult to resonate non-magnetic materials, such as aluminium, therefore, a comparison before and after plating could not be made. A new "Q" meter was then developed based on an Impulse Technique. A regulated miniature hammer was used to excite the test piece at the fundamental mode instead of an electronic hammer and test pieces were supported at the two predetermined nodal points using nylon threads. This instrument developed was not very successful at detecting changes due to good and poor pretreatments given before plating, however, it was more sensitive to changes at the surface such as room temperature oxidation. Statistical analysis of test results from untreated aluminium alloys show that the instrument is not always consistent, the variation was even bigger when readings were taken on different days. Although aluminium is said to form protective oxides at room temperature there was evidence that the aluminium surface changes continuously due to film formation, growth and breakdown. Nickel plated and zinc alloy immersion coated samples also showed variation in Q with time. In order to prove that the variations in Q were mainly due to surface oxidation, aluminium samples were lacquered and anodised Such treatments enveloped the active surfaces reacting with the environment and the Q variation with time was almost eliminated especially after hard anodising. This instrument detected major differences between different untreated aluminium substrates.Also Q values decreased progressively as coating thicknesses were increased. This instrument was also able to detect changes in Q due to heat-treatment of aluminium alloys.
Resumo:
Experiments and theoretical modelling have been carried out to predict the performance of a solar-powered liquid desiccant cooling system for greenhouses. We have tested two components of the system in the laboratory using MgCl2 desiccant: (i) a regenerator which was tested under a solar simulator and (ii) a desiccator which was installed in a test duct. Theoretical models have been developed for both regenerator and desiccator and gave good agreement with the experiments. The verified computer model is used to predict the performance of the whole system during the hot summer months in Mumbai, Chittagong, Muscat, Messina and Havana. Taking examples of temperate, sub-tropical, tropical and heat-tolerant tropical crops (lettuce, soya bean, tomato and cucumber respectively) we estimate the extensions in growing seasons enabled by the system. Compared to conventional evaporative cooling, the desiccant system lowers average daily maximum temperatures in the hot season by 5.5-7.5 °C, sufficient to maintain viable growing conditions for lettuce throughout the year. In the case of tomato, cucumber and soya bean the system enables optimal cultivation through most summer months. It is concluded that the concept is technically viable and deserves testing by means of a pilot installation at an appropriate location.
Resumo:
Field material testing provides firsthand information on pavement conditions which are most helpful in evaluating performance and identifying preventive maintenance or overlay strategies. High variability of field asphalt concrete due to construction raises the demand for accuracy of the test. Accordingly, the objective of this study is to propose a reliable and repeatable methodology to evaluate the fracture properties of field-aged asphalt concrete using the overlay test (OT). The OT is selected because of its efficiency and feasibility for asphalt field cores with diverse dimensions. The fracture properties refer to the Paris’ law parameters based on the pseudo J-integral (A and n) because of the sound physical significance of the pseudo J-integral with respect to characterizing the cracking process. In order to determine A and n, a two-step OT protocol is designed to characterize the undamaged and damaged behaviors of asphalt field cores. To ensure the accuracy of determined undamaged and fracture properties, a new analysis method is then developed for data processing, which combines the finite element simulations and mechanical analysis of viscoelastic force equilibrium and evolution of pseudo displacement work in the OT specimen. Finally, theoretical equations are derived to calculate A and n directly from the OT test data. The accuracy of the determined fracture properties is verified. The proposed methodology is applied to a total of 27 asphalt field cores obtained from a field project in Texas, including the control Hot Mix Asphalt (HMA) and two types of warm mix asphalt (WMA). The results demonstrate a high linear correlation between n and −log A for all the tested field cores. Investigations of the effect of field aging on the fracture properties confirm that n is a good indicator to quantify the cracking resistance of asphalt concrete. It is also indicated that summer climatic condition clearly accelerates the rate of aging. The impact of the WMA technologies on fracture properties of asphalt concrete is visualized by comparing the n-values. It shows that the Evotherm WMA technology slightly improves the cracking resistance, while the foaming WMA technology provides the comparable fracture properties with the HMA. After 15 months aging in the field, the cracking resistance does not exhibit significant difference between HMA and WMAs, which is confirmed by the observations of field distresses.
Resumo:
Distortion is one type of defect in the weld, which is troublesome for some reasons, especially in thin plate welding. Distortion was found in fibre laser welding processing for 0.7mm thickness Ti6Al4V plate. The purpose of this paper is to understand and evaluate the effect of distortion on stress level by FEA and tensile test. A group of 0.7mm Ti6Al4V plates welded using continuous wave fibre laser. FEA models were established for fibre laser welded Ti6Al4V in abaqus 6.7. © (2011) Trans Tech Publications.