2 resultados para Host Identity Protocol (HIP)
em Aston University Research Archive
Resumo:
An investigation is carried out into the design of a small local computer network for eventual implementation on the University of Aston campus. Microprocessors are investigated as a possible choice for use as a node controller for reasons of cost and reliability. Since the network will be local, high speed lines of megabit order are proposed. After an introduction to several well known networks, various aspects of networks are discussed including packet switching, functions of a node and host-node protocol. Chapter three develops the network philosophy with an introduction to microprocessors. Various organisations of microprocessors into multicomputer and multiprocessor systems are discussed, together with methods of achieving reliabls computing. Chapter four presents the simulation model and its implentation as a computer program. The major modelling effort is to study the behaviour of messages queueing for access to the network and the message delay experienced on the network. Use is made of spectral analysis to determine the sampling frequency while Sxponentially Weighted Noving Averages are used for data smoothing.
Resumo:
The statistical distribution, when determined from an incomplete set of constraints, is shown to be suitable as host for encrypted information. We design an encoding/decoding scheme to embed such a distribution with hidden information. The encryption security is based on the extreme instability of the encoding procedure. The essential feature of the proposed system lies in the fact that the key for retrieving the code is generated by random perturbations of very small value. The security of the proposed encryption relies on the security to interchange the secret key. Hence, it appears as a good complement to the quantum key distribution protocol. © 2005 Elsevier B.V. All rights reserved.