14 resultados para Horizontal Infiltration
em Aston University Research Archive
Resumo:
An experimental and theoretical study of the transport of mineral wool fibre agglomerates in nuclear power plant containment sumps is being performed. A racetrack channel was devised to provide data for the validation of numerical models, which are intended to model the transport of fibre agglomerates. The racetrack channel provides near uniform and steady conditions that lead to either the sedimentation or suspension of the agglomerates. Various experimental techniques were used to determine the velocity conditions and the distribution of the fibre agglomerates in the channel. The fibre agglomerates are modelled as fluid particles in the Eulerian reference frame. Simulations of pure sedimentation of a known mass and volume of agglomerations show that the transport of the fibre agglomerates can be replicated. The suspension of the fibres is also replicated in the simulations; however, the definition of the fibre agglomerate phase is strongly dependent on the selected density and diameter. Detailed information on the morphology of the fibre agglomerates is lacking for the suspension conditions, as the fibre agglomerates may undergo breakage and erosion. Therefore, ongoing work, which is described here, is being pursued to improve the experimental characterisation of the suspended transport of the fibre agglomerates.
Resumo:
A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems.
Resumo:
Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) are used by Severn Trent Water as a low-cost tertiary wastewater treatment for rural locations. Experience has shown that clogging is a major operational problem that reduces HSSF TW lifetime. Clogging is caused by an accumulation of secondary wastewater solids from upstream processes and decomposing leaf litter. Clogging occurs as a sludge layer where wastewater is loaded on the surface of the bed at the inlet. Severn Trent systems receive relatively high hydraulic loading rates, which causes overland flow and reduces the ability to mineralise surface sludge accumulations. A novel apparatus and method, the Aston Permeameter, was created to measure hydraulic conductivity in situ. Accuracy is ±30 %, which was considered adequate given that conductivity in clogged systems varies by several orders of magnitude. The Aston Permeameter was used to perform 20 separate tests on 13 different HSSF TWs in the UK and the US. The minimum conductivity measured was 0.03 m/d at Fenny Compton (compared with 5,000 m/d clean conductivity), which was caused by an accumulation of construction fines in one part of the bed. Most systems displayed a 2 to 3 order of magnitude variation in conductivity in each dimension. Statistically significant transverse variations in conductivity were found in 70% of the systems. Clogging at the inlet and outlet was generally highest where flow enters the influent distribution and exits the effluent collection system, respectively. Surface conductivity was lower in systems with dense vegetation because plant canopies reduce surface evapotranspiration and decelerate sludge mineralisation. An equation was derived to describe how the water table profile is influenced by overland flow, spatial variations in conductivity and clogging. The equation is calibrated using a single parameter, the Clog Factor (CF), which represents the equivalent loss of porosity that would reproduce measured conductivity according to the Kozeny-Carman Equation. The CF varies from 0 for ideal conditions to 1 for completely clogged conditions. Minimum CF was 0.54 for a system that had recently been refurbished, which represents the deviation from ideal conditions due to characteristics of non-ideal media such as particle size distribution and morphology. Maximum CF was 0.90 for a 15 year old system that exhibited sludge accumulation and overland flow across the majority of the bed. A Finite Element Model of a 15 m long HSSF TW was used to indicate how hydraulics and hydrodynamics vary as CF increases. It was found that as CF increases from 0.55 to 0.65 the subsurface wetted area increases, which causes mean hydraulic residence time to increase from 0.16 days to 0.18 days. As CF increases from 0.65 to 0.90, the extent of overland flow increases from 1.8 m to 13.1 m, which reduces hydraulic efficiency from 37 % to 12 % and reduces mean residence time to 0.08 days.
Resumo:
This paper surveys the literature on scale and scope economies in the water and sewerage industry. The magnitude of scale and scope economies determines the cost efficient configuration of any industry. In the case of a regulated sector, reliable estimates of these economies are relevant to inform reform proposals that promote vertical (un)bundling and mergers. The empirical evidence allows some general conclusions. First, there is considerable evidence for the existence of vertical scope economies between upstream water production and distribution. Second, there is only mixed evidence on the existence of (dis)economies of scope between water and sewerage activities. Third, economies of scale exist up to certain output level, and diseconomies of scale arise if the company increases its size beyond this level. However, the optimal scale of utilities also appears to vary considerably between countries. Finally, we briefly consider the implications of our findings for water pricing and point to several directions for necessary future empirical research on the measurement of these economies, and explaining their cross country variation.
Resumo:
This paper investigates vertical economies between generation and distribution of electric power, and horizontal economies between different types of power generation in the U.S. electric utility industry. Our quadratic cost function model includes three generation output measures (hydro, nuclear and fossil fuels), which allows us to analyze the effect that generation mix has on vertical economies. Our results provide (sample mean) estimates of vertical economies of 8.1% and horizontal economies of 5.4%. An extensive sensitivity analysis is used to show how the scope measures vary across alternative model specifications and firm types. © 2012 Blackwell Publishing Ltd and the Editorial Board of The Journal of Industrial Economics.
Resumo:
This research employs econometric analysis on a cross section of American electricity companies in order to study the cost implications associated with unbundling the operations of integrated companies into vertically and/or horizontally separated companies. Focusing on the representative sample average firm, we find that complete horizontal and vertical disintegration resulting in the creation of separate nuclear, conventional, and hydro electric generation companies as well as a separate firm distributing power to final consumers, results in a statistically significant 13.5 percent increase in costs. Maintaining a horizontally integrated generator producing nuclear, conventional, and hydro electric generation while imposing vertical separation by creating a stand alone distribution company, results in a lower but still substantial and statistically significant cost penalty amounting to an 8.1 % increase in costs relative to a fully integrated structure. As these results imply that a vertically separated but horizontally integrated generation firm would need to reduce the costs of generation by 11% just to recoup the cost increases associated with vertical separation, even the costs associated with just vertical unbundling are quite substantial. Our paper is also the first academic paper we are aware of that systematically considers the impact of generation mix on vertical, horizontal, and overall scope economies. As a result, we are able to demonstrate that the estimated cost of unbundling in the electricity sector is substantially influenced by generation mix. Thus, for example, we find evidence of strong vertical integration economies between nuclear and conventional generation, but little evidence for vertical integration benefits between hydro generation and the distribution of power. In contrast, we find strong evidence suggesting the presence of substantial horizontal integration economies associated with the joint production of hydro generation with nuclear and/or conventional fossil fuel generation. These results are significant because they indicate that the cost of unbundling the electricity sector will differ substantially in different systems, meaning that a blanket regulatory policy with regard to the appropriateness of vertical and horizontal unbundling is likely to be inappropriate.
Resumo:
Differencing from previous studies on foreign direct investment (FDI) spillovers to domestic enterprises which mainly focus on productivity, in this paper we take a different perspective by analysing the impacts of FDI to technical efficiency of domestic firms. The paper goes beyond the current literature to shed some light on the spillover effects of FDI to technical efficiency of small and medium enterprises in a developing country. By exploiting a firm-level panel dataset and using SFA models following Battese and Coelli (1995), the paper is able to analyse horizontal spillovers through imitation and competition and labour mobility as well as vertical spillovers through backward and forward linkages on technical efficiency. The paper contributes to the understanding of potential effects on foreign invested enterprises on domestic economy in general and local enterprises performance in particular. Thus it importantly assists policy making by the government of developing countries, where FDI is believed to create technical spillovers on domestic enterprises.
Resumo:
A horizontal fluid layer heated from below in the presence of a vertical magnetic field is considered. A simple asymptotic analysis is presented which demonstrates that a convection mode attached to the side walls of the layer sets in at Rayleigh numbers much below those required for the onset of convection in the bulk of the layer. The analysis complements an earlier analysis by Houchens [J. Fluid Mech. 469, 189 (2002)] which derived expressions for the critical Rayleigh number for the onset of convection in a vertical cylinder with an axial magnetic field in the cases of two aspect ratios. © 2008 American Institute of Physics.
Resumo:
This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility. Graphical abstract: [Figure not available: see fulltext.] © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.
Resumo:
This paper describes the horizontal deflection behaviour of the streams of particles in paramagnetic fluids under a high-gradient superconducting magnetic field, which is the continued work on the exploration of particle magneto-Archimedes levitation. Based on the previous work on the horizontal deflection of a single particle, a glass box and collector had been designed to observe the movement of particle group in paramagnetic fluids. To get the exact separation efficiency, the method of "sink-float" involved the high density fluid polytungstate (dense medium separation) and MLA (Mineral Liberation Analyser) was performed. It was found that the particles were deflected and settled at certain positions on the container floor due to the combined forces of gravity and magneto-Archimedes forces as well as a lateral buoyancy (displacement) force. Mineral particles with different densities and susceptibilities could be deflected to different positions, thus producing groups of similar types of particles. The work described here, although in its infancy, could form the basis of new approach of separating particles based on a combination of susceptibility and density. © 2014 Elsevier B.V.
Resumo:
Heme-oxygenases (HOs) catalyze the conversion of heme into carbon monoxide and biliverdin. HO-1 is induced during hypoxia, ischemia/reperfusion, and inflammation, providing cytoprotection and inhibiting leukocyte migration to inflammatory sites. Although in vitro studies have suggested an additional role for HO-1 in angiogenesis, the relevance of this in vivo remains unknown. We investigated the involvement of HO-1 in angiogenesis in vitro and in vivo. Vascular endothelial growth factor (VEGF) induced prolonged HO-1 expression and activity in human endothelial cells and HO-1 inhibition abrogated VEGF-driven angiogenesis. Two murine models of angiogenesis were used: (1) angiogenesis initiated by addition of VEGF to Matrigel and (2) a lipopolysaccharide (LPS)-induced model of inflammatory angiogenesis in which angiogenesis is secondary to leukocyte invasion. Pharmacologic inhibition of HO-1 induced marked leukocytic infiltration that enhanced VEGF-induced angiogenesis. However, in the presence of an anti-CD18 monoclonal antibody (mAb) to block leukocyte migration, VEGF-induced angiogenesis was significantly inhibited by HO-1 antagonists. Furthermore, in the LPS-induced model of inflammatory angiogenesis, induction of HO-1 with cobalt protoporphyrin significantly inhibited leukocyte invasion into LPS-conditioned Matrigel and thus prevented the subsequent angiogenesis. We therefore propose that during chronic inflammation HO-1 has 2 roles: first, an anti-inflammatory action inhibiting leukocyte infiltration; and second, promotion of VEGF-driven noninflammatory angiogenesis that facilitates tissue repair.
Resumo:
Clogging is the main operational problem associated with horizontal subsurface flow constructed wetlands (HSSF CWs). The measurement of saturated hydraulic conductivity has proven to be a suitable technique to assess clogging within HSSF CWs. The vertical and horizontal distribution of hydraulic conductivity was assessed in two full-scale HSSF CWs by using two different in situ permeameter methods (falling head (FH) and constant head (CH) methods). Horizontal hydraulic conductivity profiles showed that both methods are correlated by a power function (FH= CH 0.7821, r 2=0.76) within the recorded range of hydraulic conductivities (0-70 m/day). However, the FH method provided lower values of hydraulic conductivity than the CH method (one to three times lower). Despite discrepancies between the magnitudes of reported readings, the relative distribution of clogging obtained via both methods was similar. Therefore, both methods are useful when exploring the general distribution of clogging and, specially, the assessment of clogged areas originated from preferential flow paths within full-scale HSSF CWs. Discrepancy between methods (either in magnitude and pattern) aroused from the vertical hydraulic conductivity profiles under highly clogged conditions. It is believed this can be attributed to procedural differences between the methods, such as the method of permeameter insertion (twisting versus hammering). Results from both methods suggest that clogging develops along the shortest distance between water input and output. Results also evidence that the design and maintenance of inlet distributors and outlet collectors appear to have a great influence on the pattern of clogging, and hence the asset lifetime of HSSF CWs. © Springer Science+Business Media B.V. 2011.
Resumo:
A Finite Element Analysis (FEA) model is used to explore the relationship between clogging and hydraulics that occurs in Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) in the United Kingdom (UK). Clogging is assumed to be caused by particle transport and an existing single collector efficiency model is implemented to describe this behaviour. The flow model was validated against HSSF TW survey results obtained from the literature. The model successfully simulated the influence of overland flow on hydrodynamics, and the interaction between vertical flow through the low permeability surface layer and the horizontal flow of the saturated water table. The clogging model described the development of clogging within the system but under-predicted the extent of clogging which occurred over 15 years. This is because important clogging mechanisms were not considered by the model, such as biomass growth and vegetation establishment. The model showed the usefulness of FEA for linking hydraulic and clogging phenomenon in HSSF TWs and could be extended to include treatment processes. © 2011 Springer Science+Business Media B.V.
Resumo:
Summary: Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal-axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments.