5 resultados para Homer
em Aston University Research Archive
Resumo:
The work described in this thesis has been concerned with exploring the potential uses of ultrasound in Nuclear Magnetic Resonance (NMR) spectroscopy, The NMR spectra of liquids provide detailed structural information that may be deduced from the chemical shifts and spin-spin coupling, that are evident in the narrow resonances, arising from some of the nuclear broadening interactions being reduced to zero. In the solid state, all of the nuclear broadening interactions are present and broad lines in the NMR spectrum are observed. Current techniques employed to reduce the line widths in solids are based on coherent averaging techniques such as MAS NMR1,2 which can remove first order interactions. Recently DOR3 and DAS4 have become available to remove higher order interactions. SINNMR (Sonically Induced Narrowing of the NMR spectra of solids) has been reported by Homer et al5 and developed by Homer and Howard6 to reduce the line widths of solids. The basis of their work is the proposal that a colloidal suspension of solid particles can be made to move like large molecules by using ultrasonic agitation. The advantage of the technique is that the particles move incoherently removing all of the nuclear interactions responsible for broad lines. This thesis describes work on the extension of SINNMR by showing that the line width of 27AI and 11B for the glass Na20/B203/AI203 can be reduced by placing solid particles in a colloidal suspension. Further line width reduction is possible by applying ultrasound, at 2 MHz, of sufficient intensity. It is proposed that a cavitation field is responsible for imparting sufficient rotational motion to the solid particles to partially average the nuclear interactions responsible for broad lines. Rapid stirring of the colloidal suspension generates turbulent flow, however, the motion is insufficient to narrow the line widths for 27AI in the glass. Investigations of sonochemical reactions for in situ rate measurements by NMR have been made. 8y using the Weissler reaction7, it has been shown that ultrasonic cavitation is possible up to 10MHz. Preliminary studies have been carried out into the rate of ultrasonic polymerisation of methylmethacrylate by NMR. Long range order in liquid crystals can imposed when they are aligned in the presence a magnetic field. The degree of alignment can be monitored by NMR using, for example a deuterated solute added to the liquid crystal8. Ultrasonic streaming can then be employed to deflect the directors of the liquid crystal from their equilibrium position, resulting in a change In the NMR spectrum. The angle of deflection has been found for the thermotropic liquid crystal (I35) to be ca, 35° and for the lyotropic (ZLI-1167) to be ca, 20°, Mechanical stirring can used to re- orientate the liquid crystal but was found to give a smaller deflection, In a separate study, that did not use ultrasound, it has been found that the signal to noise ratio of 13C NMR signals can be enhanced by rapidly stirring a Iiquid. Accelerating the diffusion of nuclei out of the coil region enables M0 to be re-established more rapidly than the normal relaxation process. This allows the pulse repetition rate to be reduced without saturating the spin system. The influence of varying the relaxation delay, acquisition time and inter-pulse delay have been studied and parameters optimised. By studying cholesterol the technique was found to be most effective for nuclei with long relaxation times, such as quaternary carbon sites. Key Worde: NMR, Ulf.rasciund, 1,.lqi.fi!:l cryllltalt!h SCll1C1otlemlstryl I!r1hano~d algnflllf
Resumo:
Recently Homer and Percival have postulated that intermolecular van der Waals dispersion forces can be characterized by three mechanisms. The first arises via the mean square reaction field < R1; 2> due to the transient dipole of a particular solute molecule that is considered situated in a cavity surrounded by solvent molecules; this was characterized by an extended Onsager approach. The second stems from the extra cavity mean square reaction field < R2; 2> of the near neighbour solvent molecules. The third originates from square field electric fields E2BI due to a newly characterized effect in which solute atoms are `buffeted' by the peripheral atoms of adjacent solvent molecules. The present work concerns more detailed studies of the buffeting screening, which is governed by sterically controlled parameter (2T - T)2, where and are geometric structural parameters. The original approach is used to characterise the buffeting shifts induced by large solvent molecules and the approach is found to be inadequate. Consequently, improved methods of calculating and are reported. Using the improved approach it is shown that buffeting is dependent on the nature of the solvent as well as the nature of the solute molecule. Detailed investigation of the buffeting component of the van der Waals chemical shifts of selected solutes in a range of solvents containing either H or Cl as peripheral atoms have enabled the determination of a theoretical acceptable value for the classical screening coefficient B for protons. 1H and 13C resonance studies of tetraethylmethane and 1H, 13C and 29Si resonance studies of TMS have been used to support the original contention that three (< R1; 2> , < R2; 2> and E2BI) components of intermolecular van der Waals dispersion fields are required to characterise vdW chemical shifts.
Dimethylsulfoxide oxidizes glutathione in vitro and in human erythrocytes:kinetic analysis by 1H NMR
Resumo:
The interaction of dimethylsulfoxide (Me2SO) with glutathione was investigated under non-equilibrium conditions in solution using 1H NMR and in intact erythrocytes using 1H spin-echo NMR. In solution the reaction was observed to follow second-order kinetics (Rate = k1[glutathione][Me2SO]) at 300 K pH 7.4, ksol = 4.7 × 10-5 mol -1 L1 s-1. In intact erythrocytes the rate constant for the cellular environment, kcell, was found to be slightly larger at 8.1 × 10-5 mol-1 L1 s-1. Furthermore, the reaction of Me2SO with erythrocyte glutathione showed a biphasic dependence on the Me2SO concentration, with little oxidation of glutathione occurring until the Me2SO concentration exceeded 0.5 mol L-1. The results suggest that at lower concentrations, Me2SO can be effectively removed, most probably by reaction with glutathione, which is regenerated by glutathione reductase, although preferential reaction with other cellular components (e.g., membrane or cellular thiols) cannot be ruled out. Thus the concentrations of Me2SO that are commonly used in cryopreservation of mammalian cells (∼1.4 mol L-1) can cause oxidation of intracellular glutathione.
Resumo:
In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.