2 resultados para Holiday cooking.

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Food allergy has been shown to severely affect quality of life (QoL) in children and their families. The Anaphylaxis Campaign UK supports families with allergic children and as part of that support ran an activity holiday for those with food allergy. This study investigated the effectiveness of this activity holiday for reducing anxiety and improving QoL and food allergy management for these children. Methods Measures were taken at baseline, at the start of the activity holiday, at the end of the holiday, at 3 and 6 months follow-up. Children (n = 24) completed a paediatric food allergy–specific QoL questionnaire (PFA-QL), a generic QoL questionnaire (PedsQL™), the Spence Children's Anxiety Scale (SCAS) and the Children's Health Locus of Control (CHLC) scale at all stages of the study. Results There were significant improvements in social QoL, food allergy–specific QoL, total CHLC and internal locus of control scores over time (p > 0.05). There were significant decreases in powerful others locus of control, total anxiety and obsessive compulsive disorder scores (p < 0.05). Greater anxiety significantly correlated with poorer QoL at all time points; no correlations with locus of control were significant at the 3- and 6-month follow-up. Conclusions The activity holiday was of significant benefit to the children who took part, providing support for the need for activity holidays such as this for children with severe food allergy. Ways in which adaptive locus of control and improved quality of life can be facilitated need to be further explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waste cooking oils can be converted into fuels to provide economical and environmental benefits. One option is to use such fuels in stationary engines for electricity generation, co-generation or tri-generation application. In this study, biodiesel derived from waste cooking oil was tested in an indirect injection type 3-cylinder Lister Petter biodiesel engine. We compared the combustion and emission characteristics with that of fossil diesel operation. The physical and chemical properties of pure biodiesel (B100) and its blends (20% and 60% vol.) were measured and compared with those of diesel. With pure biodiesel fuel, full engine power was achieved and the cylinder gas pressure diagram showed stable operation. At full load, peak cylinder pressure of B100 operation was almost similar to diesel and peak burn rate of combustion was about 13% higher than diesel. For biodiesel operation, occurrences of peak burn rates were delayed compared to diesel. Fuel line injection pressure was increased by 8.5-14.5% at all loads. In comparison to diesel, the start of combustion was delayed and 90% combustion occurred earlier. At full load, the total combustion duration of B100 operation was almost 16% lower than diesel. Biodiesel exhaust gas emissions contained 3% higher CO2 and 4% lower NOx, as compared to diesel. CO emissions were similar at low load condition, but were decreased by 15 times at full load. Oxygen emission decreased by around 1.5%. Exhaust gas temperatures were almost similar for both biodiesel and diesel operation. At full engine load, the brake specific fuel consumption (on a volume basis) and brake thermal efficiency were respectively about 2.5% and 5% higher compared to diesel. Full engine power was achieved with both blends, and little difference in engine performance and emission results were observed between 20% and 60% blends. The study concludes that biodiesel derived from waste cooking oil gave better efficiency and lower NOx emissions than standard diesel. Copyright © 2012 SAE International.