16 resultados para Histological biomarker
em Aston University Research Archive
Resumo:
This article reviews methods for quantifying the abundance of histological features in thin tissue sections of brain such as neurons, glia, blood vessels, and pathological lesions. The sampling methods by which quantitative measures can be obtained are described. In addition, methods are described for determining the spatial pattern of an object and for measuring the degree of spatial correlation between two or more histological features.
Resumo:
The development of abnormal protein aggregates in the form of extracellular plaques and intracellular inclusions is a characteristic feature of many neurodegenerative diseases such as Alzheimer's disease (AD), Creutzfeldt-Jakob disease (CJD) and the fronto-temporal dementias (FTD). An important aspect of a pathological protein aggregate is its spatial topography in the tissue. Lesions may not be randomly distributed within a histological section but exhibit spatial pattern, a departure from randomness either towards regularity or clustering. Information on the spatial pattern of a lesion may be useful in elucidating its pathogenesis and in studying the relationships between different lesions. This article reviews the methods that have been used to study the spatial topography of lesions. These include simple tests of whether the distribution of a lesion departs significantly from random using randomized points or sample fields, and more complex methods that employ grids or transects of contiguous fields and which can detect the intensity of aggregation and the sizes, distribution and spacing of the clusters. The usefulness of these methods in elucidating the pathogenesis of protein aggregates in neurodegenerative disease is discussed.
Resumo:
This article reviews the statistical methods that have been used to study the planar distribution, and especially clustering, of objects in histological sections of brain tissue. The objective of these studies is usually quantitative description, comparison between patients or correlation between histological features. Objects of interest such as neurones, glial cells, blood vessels or pathological features such as protein deposits appear as sectional profiles in a two-dimensional section. These objects may not be randomly distributed within the section but exhibit a spatial pattern, a departure from randomness either towards regularity or clustering. The methods described include simple tests of whether the planar distribution of a histological feature departs significantly from randomness using randomized points, lines or sample fields and more complex methods that employ grids or transects of contiguous fields, and which can detect the intensity of aggregation and the sizes, distribution and spacing of clusters. The usefulness of these methods in understanding the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Creutzfeldt-Jakob disease is discussed. © 2006 The Royal Microscopical Society.
Resumo:
Histological features visible in thin sections of brain tissue, such as neuronal perikarya, blood vessels, or pathological lesions may exhibit a degree of spatial association or correlation. In neurodegenerative disorders such as AD, Pick's disease, and CJD, information on whether different types of pathological lesion are spatially correlated may be useful in elucidating disease pathogenesis. In the present article the statistical methods available for studying spatial association in histological sections are reviewed. These include tests of interspecific association between two or more histological features using χ2 contingency tables, measurement of 'complete' and 'absolute' association, and more complex methods that use grids of contiguous samples. In addition, the use of correlation matrices and stepwise multiple regression methods are described. The advantages and limitations of each method are reviewed and possible future developments discussed.
Resumo:
A method of determining the spatial pattern of any histological feature in sections of brain tissue which can be measured quantitatively is described and compared with a previously described method. A measurement of a histological feature such as density, area, amount or load is obtained for a series of contiguous sample fields. The regression coefficient (β) is calculated from the measurements taken in pairs, first in pairs of adjacent samples and then in pairs of samples taken at increasing degrees of separation between them, i.e. separated by 2, 3, 4,..., n units. A plot of β versus the degree of separation between the pairs of sample fields reveals whether the histological feature is distributed randomly, uniformly or in clusters. If the feature is clustered, the analysis determines whether the clusters are randomly or regularly distributed, the mean size of the clusters and the spacing of the clusters. The method is simple to apply and interpret and is illustrated using simulated data and studies of the spatial patterns of blood vessels in the cerebral cortex of normal brain, the degree of vacuolation of the cortex in patients with Creutzfeldt-Jacob disease (CJD) and the characteristic lesions present in Alzheimer's disease (AD). Copyright (C) 2000 Elsevier Science B.V.
Resumo:
A method is described which enables the spatial pattern of discrete objects in histological sections of brain tissue to be determined. The method can be applied to cell bodies, sections of blood vessels or the characteristic lesions which develop in the brain of patients with neurodegenerative disorders. The density of the histological feature under study is measured in a series of contiguous sample fields arranged in a grid or transect. Data from adjacent sample fields are added together to provide density data for larger field sizes. A plot of the variance/mean ratio (V/M) of the data versus field size reveals whether the objects are distributed randomly, uniformly or in clusters. If the objects are clustered, the analysis determines whether the clusters are randomly or regularly distributed and the mean size of the clusters. In addition, if two different histological features are clustered, the analysis can determine whether their clusters are in phase, out of phase or unrelated to each other. To illustrate the method, the spatial patterns of senile plaques and neurofibrillary tangles were studied in histological sections of brain tissue from patients with Alzheimer's disease.
Resumo:
Stereology and other image analysis methods have enabled rapid and objective quantitative measurements to be made on histological sections. These mesurements may include total volumes, surfaces, lengths and numbers of cells and blood vessels or pathological lesions. Histological features, however, may not be randomly distributed across a section but exhibit 'dispersion', a departure from randomness either towards regularity or aggregation. Information of population dispersion may be valuable not only in understanding the two-or three-dimensional structure but also in elucidating the pathogenesis of lesions in pathological conditions. This article reviews some of the statistical methods available for studying dispersion. These range from simple tests of whether the distribution of a histological faeture departs significantly from random to more complex methods which can detect the intensity of aggregation and the sizes, distribution and spacing of the clusters.
Resumo:
Counts of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) were made in the frontal and temporal cortex from patients with Pick's disease (PD). Lesions were stained histologically with hematoxylin and eosin (HE) and the Bielschowsky silver impregnation method and labeled immunohistochemically with antibodies raised to ubiquitin and tau. The greatest numbers of PB were revealed by immunohistochemistry. Counts of PB revealed by ubiquitin and tau were highly positively correlated which suggested that the two antibodies recognized virtually identical populations of PB. The greatest numbers of PC were revealed by HE followed by the anti-ubiquitin antibody. However, the correlation between counts was poor, suggesting that HE and ubiquitin revealed different populations of PC. The greatest numbers of SP and NFT were revealed by the Bielschowsky method indicating the presence of Alzheimer-type lesions not revealed by the immunohistochemistry. In addition, more NFT were revealed by the anti-ubiquitin compared with the anti-tau antibody. The data suggested that in PD: (i) the anti-ubiquitin and anti-tau antibodies were equally effective at labeling PB; (ii) both HE and anti-ubiquitin should be used to quantitate PC; and (iii) the Bielschowsky method should be used to quantitate SP and NFT.
Resumo:
Dry eye is a common yet complex condition. Intrinsic and extrinsic factors can cause dysfunction of the lids, lacrimal glands, meibomian glands, ocular surface cells, or neural network. These problems would ultimately be expressed at the tear film-ocular surface interface. The manifestations of these problems are experienced as symptoms such as grittiness, discomfort, burning sensation, hyperemia, and secondary epiphora in some cases. Accurate investigation of dry eye is crucial to correct management of the condition. Techniques can be classed according to their investigation of tear production, tear stability, and surface damage (including histological tests). The application, validity, reliability, compatibility, protocols, and indications for these are important. The use of a diagnostic algorithm may lead to more accurate diagnosis and management. The lack of correlation between signs and symptoms seems to favor tear film osmolarity, an objective biomarker, as the best current clue to correct diagnosis.
Resumo:
Anterior gradient-2 protein was identified using proteomic technologies as a p53 inhibitor which is overexpressed in human cancers, and this protein presents a novel pro-oncogenic target with which to develop diagnostic assays for biomarker detection in clinical tissue. Combinatorial phage-peptide libraries were used to select 12 amino acid polypeptide aptamers toward anterior gradient-2 to determine whether methods can be developed to affinity purify the protein from clinical biopsies. Selecting phage aptamers through four rounds of screening on recombinant human anterior gradient-2 protein identified two classes of peptide ligand that bind to distinct epitopes on anterior gradient-2 protein in an immunoblot. Synthetic biotinylated peptide aptamers bound in an ELISA format to anterior gradient-2, and substitution mutagenesis further minimized one polypeptide aptamer to a hexapeptide core. Aptamers containing this latter consensus sequence could be used to affinity purify to homogeneity human anterior gradient-2 protein from a single clinical biopsy. The spotting of a panel of peptide aptamers onto a protein microarray matrix could be used to quantify anterior gradient-2 protein from crude clinical biopsy lysates, providing a format for quantitative screening. These data highlight the utility of peptide combinatorial libraries to acquire rapidly a high-affinity ligand that can selectively bind a target protein from a clinical biopsy and provide a technological approach for clinical biomarker assay development in an aptamer microarray format.
Resumo:
The oxidoreductase Trx-1 (thioredoxin 1) is highly conserved and found intra- and extra-cellularly in mammalian systems. There is increasing interest in its capacity to regulate immune function based on observations of altered distribution and expression during ageing and disease. We have investigated previously whether extracellular T-cell or peripheral blood mononuclear cell Trx-1 levels serve as a robust marker of ageing. In a preliminary study of healthy older adults compared with younger adults, we showed that therewas a significant, butweak, relationshipwith age. Interestingly, patientswith rheumatoid arthritis and cancer have been described by others to secrete or express greater surface Trx-1 than predicted. It is interesting to speculate whether a decline in Trx-1 during ageing protects against such conditions, but correspondingly increases risk of disease associated with Trx-1 depletion such as cardiovascular disease. These hypotheses are being explored in the MARK-AGE study, and preliminary findings confirm an inverse correlation of surface Trx-1 with age. We review recent concepts around the role of Trx-1 and its partners in T-cell function on the cell surface and as an extracellular regulator of redox state in a secreted form. Further studies on the redox state and binding partners of surface and secreted Trx-1 in larger patient datasets are needed to improve our understanding of why Trx-1 is important for lifespan and immune function. © The Authors Journal compilation © 2014 Biochemical Society.
Resumo:
Ageing is accompanied by many visible characteristics. Other biological and physiological markers are also well-described e.g. loss of circulating sex hormones and increased inflammatory cytokines. Biomarkers for healthy ageing studies are presently predicated on existing knowledge of ageing traits. The increasing availability of data-intensive methods enables deep-analysis of biological samples for novel biomarkers. We have adopted two discrete approaches in MARK-AGE Work Package 7 for biomarker discovery; (1) microarray analyses and/or proteomics in cell systems e.g. endothelial progenitor cells or T cell ageing including a stress model; and (2) investigation of cellular material and plasma directly from tightly-defined proband subsets of different ages using proteomic, transcriptomic and miR array. The first approach provided longitudinal insight into endothelial progenitor and T cell ageing.This review describes the strategy and use of hypothesis-free, data-intensive approaches to explore cellular proteins, miR, mRNA and plasma proteins as healthy ageing biomarkers, using ageing models and directly within samples from adults of different ages. It considers the challenges associated with integrating multiple models and pilot studies as rational biomarkers for a large cohort study. From this approach, a number of high-throughput methods were developed to evaluate novel, putative biomarkers of ageing in the MARK-AGE cohort.
Resumo:
There is a growing awareness that inflammatory diseases have an oxidative pathology, which can result in specific oxidation of amino acids within proteins. It is known that patients with inflammatory disease have higher levels of plasma protein nitro-tyrosine than healthy controls. Fibrinogen is an abundant plasma protein, highly susceptible to such oxidative modifications, and is therefore a potential marker for oxidative protein damage. The aim of this study was to map tyrosine nitration in fibrinogen under oxidative conditions and identify susceptible residues. Fibrinogen was oxidised with 0.25mM and 1mM SIN-1, a peroxynitrite generator, and methionine was used to quench excess oxidant in the samples. The carbonyl assay was used to confirm oxidation in the samples. The carbonyl levels were 2.3, 8.72 and 11.5nmol/mg protein in 0, 0.25mM and 1mM SIN-1 samples respectively. The samples were run on a SDS-PAGE gel and tryptically digested before analysis by HPLC MS-MS. All 3 chains of fibrinogen were observed for all treatment conditions. The overall sequence coverage for fibrinogen determined by Mascot was between 60-75%. The oxidised samples showed increases in oxidative modifications in both alpha and beta chains, commonly methionine sulfoxide and tyrosine nitration, correlating with increasing SIN-1 treatment. Tyrosines that were most susceptible were Tyr135 (tryptic peptide YLQEIYNSNNQK) and Tyr277 (tryptic peptide GGSTSYGTGSETESPR), but several other nitrated tyrosines were also identified with high confidence. Identification of these susceptible peptides will allow design of sequences-specific biomarkers of oxidative and nitrative damage to plasma protein in inflammatory conditions.
Resumo:
Findings on growth regulating activities of the end-product of lipid peroxidation 4-hydroxy-2-nonenal (HNE), which acts as a “second messenger of free radicals”, overlapped with the development of antibodies specific for the aldehyde-protein adducts. These led to qualitative immunochemical determinations of the HNE presence in various pathophysiological processes and to the change of consideration of the aldehyde’s bioactivities from toxicity into cell signalling. Moreover, findings of the HNE-protein adduct in various organs under physiological circumstances support the concept of “oxidative homeostasis”, which implies that oxidative stress and lipid peroxidation are not only pathological but also physiological processes. Reactive aldehydes, at least HNE, could play important role in oxidative homeostasis, while complementary research approaches might reveal the relevance of the aldehydic-protein adducts as major biomarkers of oxidative stress, lipid peroxidation and oxidative homeostasis. Aiming to join efforts in such research activities researchers interacting through the International 4-Hydroxynonenal Club acting within the SFRR-International and through networking projects of the system of the European Cooperation in Science and Technology (COST) carried validation of the methods for lipid peroxidation and further developed the genuine 4-HNE-His ELISA founding quantitative and qualitative methods for detection of 4-HNE-His adducts as valuable tool to study oxidative stress and lipid peroxidation in cell cultures, various organs and tissues and eventually for human plasma and serum analyses [1]. Reference: 1. Weber, Daniela. Lidija, Milkovic. Measurement of HNE-protein adducts in human plasma and serum by ELISA—Comparison of two primary antibodies. Redox Biol. 2013. 226-233.
Resumo:
Background: Major Depressive Disorder (MDD) is among the most prevalent and disabling medical conditions worldwide. Identification of clinical and biological markers ("biomarkers") of treatment response could personalize clinical decisions and lead to better outcomes. This paper describes the aims, design, and methods of a discovery study of biomarkers in antidepressant treatment response, conducted by the Canadian Biomarker Integration Network in Depression (CAN-BIND). The CAN-BIND research program investigates and identifies biomarkers that help to predict outcomes in patients with MDD treated with antidepressant medication. The primary objective of this initial study (known as CAN-BIND-1) is to identify individual and integrated neuroimaging, electrophysiological, molecular, and clinical predictors of response to sequential antidepressant monotherapy and adjunctive therapy in MDD. Methods: CAN-BIND-1 is a multisite initiative involving 6 academic health centres working collaboratively with other universities and research centres. In the 16-week protocol, patients with MDD are treated with a first-line antidepressant (escitalopram 10-20 mg/d) that, if clinically warranted after eight weeks, is augmented with an evidence-based, add-on medication (aripiprazole 2-10 mg/d). Comprehensive datasets are obtained using clinical rating scales; behavioural, dimensional, and functioning/quality of life measures; neurocognitive testing; genomic, genetic, and proteomic profiling from blood samples; combined structural and functional magnetic resonance imaging; and electroencephalography. De-identified data from all sites are aggregated within a secure neuroinformatics platform for data integration, management, storage, and analyses. Statistical analyses will include multivariate and machine-learning techniques to identify predictors, moderators, and mediators of treatment response. Discussion: From June 2013 to February 2015, a cohort of 134 participants (85 outpatients with MDD and 49 healthy participants) has been evaluated at baseline. The clinical characteristics of this cohort are similar to other studies of MDD. Recruitment at all sites is ongoing to a target sample of 290 participants. CAN-BIND will identify biomarkers of treatment response in MDD through extensive clinical, molecular, and imaging assessments, in order to improve treatment practice and clinical outcomes. It will also create an innovative, robust platform and database for future research. Trial registration: ClinicalTrials.gov identifier NCT01655706. Registered July 27, 2012.