6 resultados para Himantura Fai Dasyatididae
em Aston University Research Archive
Resumo:
Dissimilarity measurement plays a crucial role in content-based image retrieval, where data objects and queries are represented as vectors in high-dimensional content feature spaces. Given the large number of dissimilarity measures that exist in many fields, a crucial research question arises: Is there a dependency, if yes, what is the dependency, of a dissimilarity measure’s retrieval performance, on different feature spaces? In this paper, we summarize fourteen core dissimilarity measures and classify them into three categories. A systematic performance comparison is carried out to test the effectiveness of these dissimilarity measures with six different feature spaces and some of their combinations on the Corel image collection. From our experimental results, we have drawn a number of observations and insights on dissimilarity measurement in content-based image retrieval, which will lay a foundation for developing more effective image search technologies.
Resumo:
Social media data are produced continuously by a large and uncontrolled number of users. The dynamic nature of such data requires the sentiment and topic analysis model to be also dynamically updated, capturing the most recent language use of sentiments and topics in text. We propose a dynamic Joint Sentiment-Topic model (dJST) which allows the detection and tracking of views of current and recurrent interests and shifts in topic and sentiment. Both topic and sentiment dynamics are captured by assuming that the current sentiment-topic-specific word distributions are generated according to the word distributions at previous epochs. We study three different ways of accounting for such dependency information: (1) Sliding window where the current sentiment-topic word distributions are dependent on the previous sentiment-topic-specific word distributions in the last S epochs; (2) skip model where history sentiment topic word distributions are considered by skipping some epochs in between; and (3) multiscale model where previous long- and shorttimescale distributions are taken into consideration. We derive efficient online inference procedures to sequentially update the model with newly arrived data and show the effectiveness of our proposed model on the Mozilla add-on reviews crawled between 2007 and 2011. © 2013 ACM 2157-6904/2013/12-ART5 $ 15.00.
Resumo:
PURPOSE. To compare the magnitude and time course of nearwork-induced transient myopia (NITM) in preadolescent Hong Kong Chinese myopes and emmetropes. METHOD. Forty-five Hong Kong Chinese children, 35 myopes and 10 emmetropes aged 6 to 12 years (median, 7.5), monocularly viewed a letter target through a Badal lens for 5 minutes at either 5.00- or 2.50-D accommodative demand, followed by 3 minutes of viewing the equivalent target at optical infinity. Accommodative responses were measured continuously with a modified, infrared, objective open-field autorefractor. Accommodative responses were also measured for a countercondition: viewing of a letter target for 5 minutes at optical infinity, followed by 3 minutes of viewing the target at a 5.00-D accommodative demand. The results were compared with tonic accommodation and both subject and family history of refractive error. RESULTS. Retinal-blur-driven NITM was significantly greater in Hong Kong Chinese children with myopic vision than in the emmetropes after both near tasks, but showed no significant dose effect. The NITM was still evident 3 minutes after viewing the 5.00-D near task for 5 minutes. The magnitude of NITM correlated with the accommodative drift after viewing a distant target for more than 4 minutes, but was unrelated to the subjects' or family history of refractive error. CONCLUSIONS. In a preadolescent ethnic population with known predisposition to myopia, there is a significant posttask blur-driven accommodative NITM, which is sustained for longer than has previously been found in white adults.
Resumo:
With the development of social media tools such as Facebook and Twitter, mainstream media organizations including newspapers and TV media have played an active role in engaging with their audience and strengthening their influence on the recently emerged platforms. In this paper, we analyze the behavior of mainstream media on Twitter and study how they exert their influence to shape public opinion during the UK's 2010 General Election. We first propose an empirical measure to quantify mainstream media bias based on sentiment analysis and show that it correlates better with the actual political bias in the UK media than the pure quantitative measures based on media coverage of various political parties. We then compare the information diffusion patterns from different categories of sources. We found that while mainstream media is good at seeding prominent information cascades, its role in shaping public opinion is being challenged by journalists since tweets from them are more likely to be retweeted and they spread faster and have longer lifespan compared to tweets from mainstream media. Moreover, the political bias of the journalists is a good indicator of the actual election results. Copyright 2013 ACM.
Resumo:
Uncertainty text detection is important to many social-media-based applications since more and more users utilize social media platforms (e.g., Twitter, Facebook, etc.) as information source to produce or derive interpretations based on them. However, existing uncertainty cues are ineffective in social media context because of its specific characteristics. In this paper, we propose a variant of annotation scheme for uncertainty identification and construct the first uncertainty corpus based on tweets. We then conduct experiments on the generated tweets corpus to study the effectiveness of different types of features for uncertainty text identification. © 2013 Association for Computational Linguistics.
Resumo:
Conventional topic models are ineffective for topic extraction from microblog messages since the lack of structure and context among the posts renders poor message-level word co-occurrence patterns. In this work, we organize microblog posts as conversation trees based on reposting and replying relations, which enrich context information to alleviate data sparseness. Our model generates words according to topic dependencies derived from the conversation structures. In specific, we differentiate messages as leader messages, which initiate key aspects of previously focused topics or shift the focus to different topics, and follower messages that do not introduce any new information but simply echo topics from the messages that they repost or reply. Our model captures the different extents that leader and follower messages may contain the key topical words, thus further enhances the quality of the induced topics. The results of thorough experiments demonstrate the effectiveness of our proposed model.