34 resultados para High throughput

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been recognised for some time that a full code of amino acid-based recognition of DNA sequences would be useful. Several approaches, which utilise small DNA binding motifs called zinc fingers, are presently employed. None of the current approaches successfully combine a combinatorial approach to the elucidation of a code with a single stage high throughput screening assay. The work outlined here describes the development of a model system for the study of DNA protein interactions and the development of a high throughput assay for detection of such interactions. A zinc finger protein was designed which will bind with high affinity and specificity to a known DNA sequence. For future work it is possible to mutate the region of the zinc finger responsible for the specificity of binding, in order to observe the effect on the DNA / protein interactions. The zinc finger protein was initially synthesised as a His tagged product. It was not possible however to develop a high throughput assay using the His tagged zinc finger protein. The gene encoding the zinc finger protein was altered and the protein synthesised as a Glutathione S-Transferase (GST) fusion product. A successful assay was developed using the GST protein and Scintillation Proximity Assay technology (Amersham Pharmacia Biotech). The scintillation proximity assay is a dynamic assay that allows the DNA protein interactions to be studied in "real time". This assay not only provides a high throughput method of screening zinc finger proteins for potential ligands but also allows the effect of addition of reagents or competitor ligands to be monitored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saturation mutagenesis is a powerful tool in modern protein engineering. This can allow the analysis of potential new properties thus allowing key residues within a protein to be targeted and randomised. However, the creation of large libraries using conventional saturation mutagenesis with degenerate codons (NNN or NNK) has inherent redundancy and disparities in residue representation. In this we describe the combination of ProxiMAX randomisation and CIS display for the use of generating novel peptides. Unlike other methods ProxiMAX randomisation does not require any intricate chemistry but simply utilises synthetic DNA and molecular biology techniques. Designed ‘MAX’ oligonucleotides were ligated, amplified and digested in an iterative cycle. Results show that randomised ‘MAX’ codons can be added sequentially to the base sequence creating a series of randomised non-degenerate codons that can subsequently be inserted into a gene. CIS display (Isogencia, UK) is an in vitro DNA based screening method that creates a genotype to phenotype link between a peptide and the nucleic acid that encodes it. The use of straight forward in vitro transcription/translation and other molecular biology techniques permits ease of use along with flexibility making it a potent screening technique. Using ProxiMAX randomisation in combination with CIS display, the aim is to produce randomised anti-nerve growth factor (NGF) and calcitonin gene-related (CGRP) peptides to demonstrate the high-throughput nature of this combination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microfluidics has recently emerged as a new method of manufacturing liposomes, which allows for reproducible mixing in miliseconds on the nanoliter scale. Here we investigate microfluidics-based manufacturing of liposomes. The aim of these studies was to assess the parameters in a microfluidic process by varying the total flow rate (TFR) and the flow rate ratio (FRR) of the solvent and aqueous phases. Design of experiment and multivariate data analysis were used for increased process understanding and development of predictive and correlative models. High FRR lead to the bottom-up synthesis of liposomes, with a strong correlation with vesicle size, demonstrating the ability to in-process control liposomes size; the resulting liposome size correlated with the FRR in the microfluidics process, with liposomes of 50 nm being reproducibly manufactured. Furthermore, we demonstrate the potential of a high throughput manufacturing of liposomes using microfluidics with a four-fold increase in the volumetric flow rate, maintaining liposome characteristics. The efficacy of these liposomes was demonstrated in transfection studies and was modelled using predictive modeling. Mathematical modelling identified FRR as the key variable in the microfluidic process, with the highest impact on liposome size, polydispersity and transfection efficiency. This study demonstrates microfluidics as a robust and high-throughput method for the scalable and highly reproducible manufacture of size-controlled liposomes. Furthermore, the application of statistically based process control increases understanding and allows for the generation of a design-space for controlled particle characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead ofbeing another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. There are many kinds of protocols that work over WMNs, such as IEEE 802.11a/b/g, 802.15 and 802.16. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. While transmission rate is a significant part, only a few algorithms such as Auto Rate Fallback (ARF) or Receiver Based Auto Rate (RBAR) have been published. In this paper we will show MAC, packet loss and physical layer conditions play important role for having good channel condition. Also we perform rate adaption along with multiple packet transmission for better throughput. By allowing for dynamically monitored, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria improvements in performance can be obtained. The proposed method is the detection of channel congestion by measuring the fluctuation of signal to the standard deviation of and the detection of packet loss before channel performance diminishes. We will show that the use of such techniques in WMN can significantly improve performance. The effectiveness of the proposed method is presented in an experimental wireless network testbed via packet-level simulation. Our simulation results show that regardless of the channel condition we were to improve the performance in the throughput.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of sufficient quantities of protein is an essential prelude to a structure determination, but for many viral and human proteins this cannot be achieved using prokaryotic expression systems. Groups in the Structural Proteomics In Europe (SPINE) consortium have developed and implemented high-throughput (HTP) methodologies for cloning, expression screening and protein production in eukaryotic systems. Studies focused on three systems: yeast (Pichia pastoris and Saccharomyces cerevisiae), baculovirus-infected insect cells and transient expression in mammalian cells. Suitable vectors for HTP cloning are described and results from their use in expression screening and protein-production pipelines are reported. Strategies for co-expression, selenomethionine labelling (in all three eukaryotic systems) and control of glycosylation (for secreted proteins in mammalian cells) are assessed. © International Union of Crystallography, 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein crystallization is of strategic and commercial relevance in the post-genomic era because of its pivotal role in structural proteomics projects. Although protein structures are crucial for understanding the function of proteins and to the success of rational drug design and other biotechnology applications, obtaining high quality crystals is a major bottleneck to progress. The major means of obtaining crystals is by massive-scale screening of a target protein solution with numerous crystallizing agents. However, when crystals appear in these screens, one cannot easily know if they are crystals of protein, salt, or any other molecule that happens to be present in the trials. We present here a method based on Attenuated Total Reflection (ATR)-FT-IR imaging that reliably identifies protein crystals through a combination of chemical specificity and the visualizing capability of this approach, thus solving a major hurdle in protein crystallization. ATR-FT-IR imaging was successfully applied to study the crystallization of thaumatin and lysozyme in a high-throughput manner, simultaneously from six different solutions. This approach is fast as it studies protein crystallization in situ and provides an opportunity to examine many different samples under a range of conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of fluorescent molecularly imprinted polymers has been prepared with a view to generating material capable of mimicking the binding characteristics of the metabolically important cytochrome isoform CYP2D6. Such polymers would have the possibility to form the sensing element in a high-throughput assay for the prediction of CYP2D6 affinity. The imprinted polymers possessed binding-dependent fluorescence. They re-bound their templates and various cross-reactivities were encountered for test compound/drug recognition. One polymer in particular exhibited a rational discrimination amongst the related synthetic templates and was reasonably successful in recognising CYP2D6 substrates from a drug panel. © 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluorescent polymers imprinted with various N1-benzylidene pyridine-2-carboxamidrazones were evaluated for their recognition of the original template and cross-reactivity to similar molecules. Dramatic quenching of fluorescence approaching background levels was observed for most cases where the "empty" MIP was re-exposed to its template. Molecules too large to enter the imprinted cavities gave no reduction of fluorescence. Other compounds were found to quench the fluorescence and are assumed to have entered the imprinted cavities. There is also evidence for partial responses which may give some measure of partial binding. The fluorescence response profiles of substrates containing polycyclic aromatics were found to be quite different from those containing flexible substituents. In order to make this approach more suitable for high-throughput screening a method has been validated wherein the extent of substrate-induced fluorescence quenching may be obtained without having to know how much polymer is present. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple protein-DNA interaction analysis has been developed using a high-affinity/high-specificity zinc finger protein. In essence, purified protein samples are immobilized directly onto the surface of microplate wells, and fluorescently labeled DNA is added in solution. After incubation and washing, bound DNA is detected in a standard microplate reader. The minimum sensitivity of the assay is approximately 0.2 nM DNA. Since the detection of bound DNA is noninvasive and the protein-DNA interaction is not disrupted during detection, iterative readings may be taken from the same well, after successive alterations in interaction conditions, if required. In this respect, the assay may therefore be considered real time and permits appropriate interaction conditions to be determined quantitatively. The assay format is ideally suited to investigate the interactions of purified unlabeled DNA binding proteins in a high-throughput format.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amino acid substitution plays a vital role in both the molecular engineering of proteins and analysis of structure-activity relationships. High-throughput substitution is achieved by codon randomisation, which generates a library of mutants (a randomised gene library) in a single experiment. For full randomisation, key codons are typically replaced with NNN (64 sequences) or NNG CorT (32 sequences). This obligates cloning of redundant codons alongside those required to encode the 20 amino acids. As the number of randomised codons increases, there is therefore a progressive loss of randomisation efficiency; the number of genes required per protein rises exponentially. The redundant codons cause amino acids to be represented unevenly; for example, methionine is encoded just once within NNN, whilst arginine is encoded six times. Finally, the organisation of the genetic code makes it impossible to encode functional subsets of amino acids (e.g. polar residues only) in a single experiment. Here, we present a novel solution to randomisation where genetic redundancy is eliminated; the number of different genes equals the number of encoded proteins, regardless of codon number. There is no inherent amino acid bias and any required subset of amino acids may be encoded in one experiment. This generic approach should be widely applicable in studies involving randomisation of proteins. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliable, high throughput, in vitro preliminary screening batteries have the potential to greatly accelerate the rate at which regulatory neurotoxicity data is generated. This study evaluated the importance of astrocytes when predicting acute toxic potential using a neuronal screening battery of pure neuronal (NT2.N) and astrocytic (NT2.A) and integrated neuronal/astrocytic (NT2.N/A) cell systems derived from the human NT2.D1 cell line, using biochemical endpoints (mitochondrial membrane potential (MMP) depolarisation and ATP and GSH depletion). Following exposure for 72 h, the known acute human neurotoxicants trimethyltin-chloride, chloroquine and 6-hydroxydopamine were frequently capable of disrupting biochemical processes in all of the cell systems at non-cytotoxic concentrations. Astrocytes provide key metabolic and protective support to neurons during toxic challenge in vivo and generally the astrocyte containing cell systems showed increased tolerance to toxicant insult compared with the NT2.N mono-culture in vitro. Whilst there was no consistent relationship between MMP, ATP and GSH log IC(50) values for the NT2.N/A and NT2.A cell systems, these data did provide preliminary evidence of modulation of the acute neuronal toxic response by astrocytes. In conclusion, the suitability of NT2 neurons and astrocytes as cell systems for acute toxicity screening deserves further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genome sequences from many organisms, including humans, have been completed, and high-throughput analyses have produced burgeoning volumes of 'omics' data. Bioinformatics is crucial for the management and analysis of such data and is increasingly used to accelerate progress in a wide variety of large-scale and object-specific functional analyses. Refined algorithms enable biotechnologists to follow 'computer-aided strategies' based on experiments driven by high-confidence predictions. In order to address compound problems, current efforts in immuno-informatics and reverse vaccinology are aimed at developing and tuning integrative approaches and user-friendly, automated bioinformatics environments. This will herald a move to 'computer-aided biotechnology': smart projects in which time-consuming and expensive large-scale experimental approaches are progressively replaced by prediction-driven investigations.