35 resultados para High strength steel

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of fracture toughness tests on a high strength steel 300m are presented. These results show (i) that in the presence of through-thickness cracks the toughness remains constant down to (a/W)-ratios as low as 0.01 and failure loads up to 0.85σy, and (ii) that the material is more resistant to crack growth when the cracks are semi-elliptical in shape, giving a toughness value which is almost 25 per cent higher than the through-thickness one. Three independent stress analyses are used to obtain stress intensity values for the semi-elliptical cracks and additional confirmation of the increase in toughness comes from stretch zone measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High strength low alloy steels have been shown to be adversely affected by the existence of regions of poor impact toughness within the heat affected zone (HAZ) produced during multipass welding. One of these regions is the intercritically reheated coarse grained HAZ or intercritical zone. Since this region is generally narrow and discontinuous, of the order of 0.5 mm in width, weld simulators are often employed to produce a larger volume of uniform microstructure suitable for toughness assessment. The steel usedfor this study was a commercial quenched and tempered steel of 450 MN m -2 yield strength. Specimen blanks were subjected to a simulated welding cycle to produce a coarse grained structure of upper bainite during the first thermal cycle, followed by a second thermal cycle where the peak temperature T p2 was controlled. Charpy tests carried out for T p2 values in the range 650-850°C showed low toughness for T p2 values between 760 and 790°C, in the intercritical regime. Microstructural investigation of the development of grain boundary martensite-retained austenite (MA) phase has been coupled with image analysis to measure the volume fraction of MAformed. Most of the MA constituent appears at the prior austenite grain boundaries during intercritical heating, resulting in a 'necklace' appearance. For values of T p2 greater than 790°C the necklace appearance is lost and the second phase areas are observed throughout the structure. Concurrent with this is the development of the fine grained, predominantly ferritic structure that is associated with the improvement in toughness. At this stage the microstructure is transforming from the intercritical regime structure to the supercritically reheated coarse grained HAZ structure. The toughness improvement occurs even though the MA phase is still present, suggesting that the embrittlement is associated with the presence of a connected grain boundary network of the MA phase. The nature of the second phase particles can be controlled by the cooling rate during the second cycle and variesfrom MA phase at high cooling rates to a pearlitic structure at low cooling rates. The lowest toughness of the intercritical zone is observed only when MA phase is present. The reason suggested for this is that only the MA particles debond readily, a number of debonded particles in close proximity providing sufficient stress concentration to initiate local cleavage. © 1993 The Institute of Materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brushite cements differ from apatite-forming compositions by consuming a lot of water in their setting reaction whereas apatite-forming cements consume little or no water at all. Only such cement systems that consume water during setting can theoretically produce near-zero porosity ceramics. This study aimed to produce such a brushite ceramic and investigated whether near elimination of porosity would prevent a burst release profile of incorporated antibiotics that is common to prior calcium phosphate cement delivery matrices. Through adjustment of the powder technological properties of the powder reactants, that is particle size and particle size distribution, and by adjusting citric acid concentration of the liquid phase to 800 mM, a relative porosity of as low as 11% of the brushite cement matrix could be achieved (a 60% reduction compared to previous studies), resulting in a wet unprecompacted compressive strength of 52 MPa (representing a more than 100% increase to previously reported results) with a workable setting time of 4.5 min of the cement paste. Up to 2 wt.% of vancomycin and ciprofloxacin could be incorporated into the cement system without loss of wet compressive strength. It was found that drug release rates could be controlled by the adjustable relative porosity of the cement system and burst release could be minimized and an almost linear release achieved, but the solubility of the antibiotic (vancomycin > ciprofloxacin) appeared also to be a crucial factor.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An initial review of the subject emphasises the need for improved fuel efficiency in vehicles and the possible role of aluminium in reducing weight. The problems of formability generally in manufacture and of aluminium in particular are discussed in the light of published data. A range of thirteen commercially available sheet aluminium alloys have been compared with respect to mechanical properties as these affect forming processes and behaviour in service. Four alloys were selected for detailed comparison. The formability and strength of these were investigated in terms of underlying mechanisms of deformation as well as the microstructural characteristics of the alloys including texture, particle dispersion, grain size and composition. In overall terms, good combinations of strength and ductility are achievable with alloys of the 2xxx and 6xxx series. Some specific alloys are notably better than others. The strength of formed components is affected by paint baking in the final stages of manufacture. Generally, alloys of the 6xxx family are strengthened while 2xxx and 5xxx become weaker. Some anomalous behaviour exists, however. Work hardening of these alloys appears to show rather abrupt decreases over certain strain ranges which is probably responsible for the relatively low strains at which both diffuse and local necking occur. Using data obtained from extended range tensile tests, the strain distribution in more complex shapes can be successfully modelled using finite element methods.Sheet failure during forming occurs by abrupt shear fracture in many instances. This condition is favoured by states of biaxial tension, surface defects in the form of fine scratches and certain types of crystallographic texture. The measured limit strains of the materials can be understood on the basis of attainment of a critical shear stress for fracture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue crack growth in high strength aluminium alloy 7150 commercial plate material has been studied in both laboratory air and acidified aqueous salt solution. The aggressive aqueous environment enhanced fatigue crack growth rates by up to an order in magnitude compared to laboratory air. The enhancement in fatigue crack growth rate was accompanied by evidence of embrittlement in the crack path, involving both brittle intergranular and transgranular failure modes. Both the enhancement of fatigue crack growth rates and the extent of intergranular growth modes are dependent on cyclic frequency which, along with the absence of a similar frequency effect in a spray-formed version of the material with a significantly different grain structure, supports a mechanism of grain boundary hydrogen diffusion for intergranular corrosion fatigue crack growth. The convergence of corrosion fatigue crack growth rates at high ΔK in both spray-formed and conventional plate materials coincides with the operation of identical transgranular corrosion fatigue modes dependent on strain-controlled hydrogen diffusion ahead of the crack tip. © 1997 Acta Metallurgica Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years dual phase steels comprising of 5-20% martensite in a ferrite matrix have come into the limelight of high strength cold formable steels because of their potential for vehicle weight saving. They show the following features: no yield point; relatively low initial flow stress; high initial workhardening rate; well sustained work hardening. As a consequence of these characteristics, dual phase steels exhibit a better combination of strength and elongation than other HSLA steels. In this thesis, a broad view of the factors which influence their properties is presented. Mechanical properties and forming ability of a commercially available dual phase steel and an AL-Si killed steel processed to dual phase form are investigated to ascertain the effect of their microstructure on their properties. It is found that the yield phenomena are masked by the transformation induced stresses present during processing and so yield point could be recovered under suitable ageing treatment; that apart from giving the above properties dual phasing gives rise to very low strain-rate sensitivity and a low R value ~ 1; that the mechanical response under rolling conditions is not different from those under tension; that there is a danger of damage to tooling during forming operations of these steels if fracture should precede instability as a result of grain size dependent strength found for these steels. It is also found that very little deformation of the martensite islands took place during deformation except at high strains. The work-hardening and the strength levels can be controlled by either decreasing the grain size or increasing the martensite volume fraction, but it is found that increasing martensite has a detrimental effect on ductility and the ductility and fracture strength can be controlled better by refining the grain size. A remarkable effect found in the dual phase steel tested is that the compressive strength is higher than the tensile strength. The reason for this observation is not yet clear but it is suggested that it might be due to the introduction of emissary type dislocations into the ferrite lattice as a result of twins formed in the martensite during transformation from austenite. The twins are envisaged to be {111} <112> in character.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel rotor structure for high-speed interior permanent magnet motors to overcome huge centrifugal forces under high-speed operation. Instead of the conventional axial stacking of silicon-steel laminations, the retaining shield rotor is inter-stacked by high-strength stainless-steel plates to enhance the rotor strength against the huge centrifugal force. Both mechanical characteristics and electromagnetic behaviors of the retaining shield rotor are analyzed using finite-element method in this paper. Prototypes and experimental results are demonstrated to evaluate the performance. The analysis and test results show that the proposed retaining shield rotor could effectively enhance the rotor strength without a significant impact on the electromagnetic performance, while some design constraints should be compromised.