7 resultados para Hierarchical modelling
em Aston University Research Archive
Resumo:
The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems.
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.
Resumo:
The absence of a definitive approach to the design of manufacturing systems signifies the importance of a control mechanism to ensure the timely application of relevant design techniques. To provide effective control, design development needs to be continually assessed in relation to the required system performance, which can only be achieved analytically through computer simulation. The technique providing the only method of accurately replicating the highly complex and dynamic interrelationships inherent within manufacturing facilities and realistically predicting system behaviour. Owing to the unique capabilities of computer simulation, its application should support and encourage a thorough investigation of all alternative designs. Allowing attention to focus specifically on critical design areas and enabling continuous assessment of system evolution. To achieve this system analysis needs to efficient, in terms of data requirements and both speed and accuracy of evaluation. To provide an effective control mechanism a hierarchical or multi-level modelling procedure has therefore been developed, specifying the appropriate degree of evaluation support necessary at each phase of design. An underlying assumption of the proposal being that evaluation is quick, easy and allows models to expand in line with design developments. However, current approaches to computer simulation are totally inappropriate to support the hierarchical evaluation. Implementation of computer simulation through traditional approaches is typically characterized by a requirement for very specialist expertise, a lengthy model development phase, and a correspondingly high expenditure. Resulting in very little and rather inappropriate use of the technique. Simulation, when used, is generally only applied to check or verify a final design proposal. Rarely is the full potential of computer simulation utilized to aid, support or complement the manufacturing system design procedure. To implement the proposed modelling procedure therefore the concept of a generic simulator was adopted, as such systems require no specialist expertise, instead facilitating quick and easy model creation, execution and modification, through simple data inputs. Previously generic simulators have tended to be too restricted, lacking the necessary flexibility to be generally applicable to manufacturing systems. Development of the ATOMS manufacturing simulator, however, has proven that such systems can be relevant to a wide range of applications, besides verifying the benefits of multi-level modelling.
Resumo:
This dissertation investigates the very important and current problem of modelling human expertise. This is an apparent issue in any computer system emulating human decision making. It is prominent in Clinical Decision Support Systems (CDSS) due to the complexity of the induction process and the vast number of parameters in most cases. Other issues such as human error and missing or incomplete data present further challenges. In this thesis, the Galatean Risk Screening Tool (GRiST) is used as an example of modelling clinical expertise and parameter elicitation. The tool is a mental health clinical record management system with a top layer of decision support capabilities. It is currently being deployed by several NHS mental health trusts across the UK. The aim of the research is to investigate the problem of parameter elicitation by inducing them from real clinical data rather than from the human experts who provided the decision model. The induced parameters provide an insight into both the data relationships and how experts make decisions themselves. The outcomes help further understand human decision making and, in particular, help GRiST provide more accurate emulations of risk judgements. Although the algorithms and methods presented in this dissertation are applied to GRiST, they can be adopted for other human knowledge engineering domains.
Resumo:
Methodologies for understanding business processes and their information systems (IS) are often criticized, either for being too imprecise and philosophical (a criticism often levied at softer methodologies) or too hierarchical and mechanistic (levied at harder methodologies). The process-oriented holonic modelling methodology combines aspects of softer and harder approaches to aid modellers in designing business processes and associated IS. The methodology uses holistic thinking and a construct known as the holon to build process descriptions into a set of models known as a holarchy. This paper describes the methodology through an action research case study based in a large design and manufacturing organization. The scientific contribution is a methodology for analysing business processes in environments that are characterized by high complexity, low volume and high variety where there are minimal repeated learning opportunities, such as large IS development projects. The practical deliverables from the project gave IS and business process improvements for the case study company.
Resumo:
Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.
Resumo:
Storyline detection from news articles aims at summarizing events described under a certain news topic and revealing how those events evolve over time. It is a difficult task because it requires first the detection of events from news articles published in different time periods and then the construction of storylines by linking events into coherent news stories. Moreover, each storyline has different hierarchical structures which are dependent across epochs. Existing approaches often ignore the dependency of hierarchical structures in storyline generation. In this paper, we propose an unsupervised Bayesian model, called dynamic storyline detection model, to extract structured representations and evolution patterns of storylines. The proposed model is evaluated on a large scale news corpus. Experimental results show that our proposed model outperforms several baseline approaches.