3 resultados para Heart defects congenital
em Aston University Research Archive
Resumo:
Background: Introducing neonatal screening procedures may not be readily accepted by parents and may increase anxiety. The acceptability of pulse oximetry screening to parents has not been previously reported. Objective: To assess maternal acceptability of pulse oximetry screening for congenital heart defects and to identify factors predictive of participation in screening. Design and setting: A questionnaire was completed by a cross-sectional sample of mothers whose babies were recruited into the PulseOx Study which investigated the test accuracy of pulse oximetry screening. Participants: A total of 119 mothers of babies with false-positive (FP) results, 15 with true-positive and 679 with true-negative results following screening. Main outcome measures: Questionnaires included measures of satisfaction with screening, anxiety, depression and perceptions of test results. Results: Participants were predominantly satisfied with screening. The anxiety of mothers given FP results was not significantly higher than that of mothers given true-negative results (median score 32.7 vs 30.0, p=0.09). White British/Irish mothers were more likely to participate in screening, with a decline rate of 5%; other ethnic groups were more likely to decline with the largest increase in declining being for Black African mothers (21%, OR 4.6, 95% CI 3.8 to 5.5). White British mothers were also less anxious (p<0.001) and more satisfied (p<0.001) than those of other ethnicities Conclusions: Pulse oximetry screening was acceptable to mothers and FP results were not found to increase anxiety. Factors leading to differences in participation and satisfaction across ethnic groups need to be identified so that staff can support parents appropriately.
Resumo:
Background: Screening for congenital heart defects (CHDs) relies on antenatal ultrasound and postnatal clinical examination; however, life-threatening defects often go undetected. Objective: To determine the accuracy, acceptability and cost-effectiveness of pulse oximetry as a screening test for CHDs in newborn infants. Design: A test accuracy study determined the accuracy of pulse oximetry. Acceptability of testing to parents was evaluated through a questionnaire, and to staff through focus groups. A decision-analytic model was constructed to assess cost-effectiveness. Setting: Six UK maternity units. Participants: These were 20,055 asymptomatic newborns at = 35 weeks’ gestation, their mothers and health-care staff. Interventions: Pulse oximetry was performed prior to discharge from hospital and the results of this index test were compared with a composite reference standard (echocardiography, clinical follow-up and follow-up through interrogation of clinical databases). Main outcome measures: Detection of major CHDs – defined as causing death or requiring invasive intervention up to 12 months of age (subdivided into critical CHDs causing death or intervention before 28 days, and serious CHDs causing death or intervention between 1 and 12 months of age); acceptability of testing to parents and staff; and the cost-effectiveness in terms of cost per timely diagnosis. Results: Fifty-three of the 20,055 babies screened had a major CHD (24 critical and 29 serious), a prevalence of 2.6 per 1000 live births. Pulse oximetry had a sensitivity of 75.0% [95% confidence interval (CI) 53.3% to 90.2%] for critical cases and 49.1% (95% CI 35.1% to 63.2%) for all major CHDs. When 23 cases were excluded, in which a CHD was already suspected following antenatal ultrasound, pulse oximetry had a sensitivity of 58.3% (95% CI 27.7% to 84.8%) for critical cases (12 babies) and 28.6% (95% CI 14.6% to 46.3%) for all major CHDs (35 babies). False-positive (FP) results occurred in 1 in 119 babies (0.84%) without major CHDs (specificity 99.2%, 95% CI 99.0% to 99.3%). However, of the 169 FPs, there were six cases of significant but not major CHDs and 40 cases of respiratory or infective illness requiring medical intervention. The prevalence of major CHDs in babies with normal pulse oximetry was 1.4 (95% CI 0.9 to 2.0) per 1000 live births, as 27 babies with major CHDs (6 critical and 21 serious) were missed. Parent and staff participants were predominantly satisfied with screening, perceiving it as an important test to detect ill babies. There was no evidence that mothers given FP results were more anxious after participating than those given true-negative results, although they were less satisfied with the test. White British/Irish mothers were more likely to participate in the study, and were less anxious and more satisfied than those of other ethnicities. The incremental cost-effectiveness ratio of pulse oximetry plus clinical examination compared with examination alone is approximately £24,900 per timely diagnosis in a population in which antenatal screening for CHDs already exists. Conclusions: Pulse oximetry is a simple, safe, feasible test that is acceptable to parents and staff and adds value to existing screening. It is likely to identify cases of critical CHDs that would otherwise go undetected. It is also likely to be cost-effective given current acceptable thresholds. The detection of other pathologies, such as significant CHDs and respiratory and infective illnesses, is an additional advantage. Other pulse oximetry techniques, such as perfusion index, may enhance detection of aortic obstructive lesions.
Resumo:
One of the objectives of the molecular biological study of glaucoma is to establish how the disease develops as a result of the production of aberrant gene products. Many of the genes associated with glaucoma code for proteins which are likely to be directly or indirectly involved in the development and/or function of cells within the trabecular meshwork. The identification of specific defects in these genes is likely to lead to a better understanding of the mechanisms involved in PCG and glaucoma in general and to the development of alternative therapies to surgery. The CYP1B1 gene in particular, which is a linked to congenital glaucoma, and is expressed in the trabecular meshwork, codes for a member of the cytochrome P450 group of proteins. These iron binding proteins constitute a family of enzymes involved in the processes of xenobiotic metabolism, growth, and development. The discovery of the CYP1B1 gene in PCG emphases the importance of abnormalities in the molecular structure of proteins expressed in cells of the trabecular network as a cause of PCG. The identification of specific genetic defects leads to the possibility of more widespread screening for PCG especially in affected families and hence, the possibility of the identification of asymptomatic carriers of the disease. Early identification of 'at risk' parents may then enable earlier detection of PCG and intervention in the infant.