3 resultados para Healthy Aging
em Aston University Research Archive
Resumo:
Differences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly- and mono-unsaturated FAs increase with age. Circulating TNF-α and IL-6 concentrations increased with age, whereas IL-10 and TGF-β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF-β1 concentrations, and higher C16:0 were associated with higher TNF-α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro-inflammatory cytokines in response to phorbol myristate acetate-induced differentiation through ceramide-dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro-resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti-inflammatory macrophages through metabolic reprogramming.
Resumo:
Differences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly- and mono-unsaturated FAs increase with age. Circulating TNF-α and IL-6 concentrations increased with age, whereas IL-10 and TGF-β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF-β1 concentrations, and higher C16:0 were associated with higher TNF-α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro-inflammatory cytokines in response to phorbol myristate acetate-induced differentiation through ceramide-dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro-resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti-inflammatory macrophages through metabolic reprogramming.
Resumo:
Aims: Obesity and Type 2 diabetes are associated with accelerated ageing. The underlying mechanisms behind this, however, are poorly understood. In this study, we investigated the association between circulating irisin - a novel my okine involved in energy regulation - and telomere length (TL) (a marker of aging) in healthy individuals and individuals with Type 2 diabetes. Methods: Eighty-two healthy people and 67 subjects with Type 2 diabetes were recruited to this cross-sectional study. Anthropometric measurements including body composition measured by biompedance were recorded. Plasma irisin was measured by ELISA on a fasted blood sample. Relative TL was determined using real-time PCR. Associations between anthropometric measures and irisin and TL were explored using Pearson’s bivariate correlations. Multiple regression was used to explore all the significant predictors of TL using backward elimination. Results: In healthy individuals chronological age was a strong negative predictor of TL (=0.552, p < 0.001). Multiple regression analysis using backward elimination (excluding age) revealed the greater relative TL could be predicted by greater total muscle mass(b = 0.046, p = 0.001), less visceral fat (b = =0.183, p < 0.001)and higher plasma irisin levels (b = 0.01, p = 0.027). There were no significant associations between chronological age, plasmairisin, anthropometric measures and TL in patients with Type 2diabetes (p > 0.1). Conclusion: These data support the view that body composition and plasma irisin may have a role in modulation of energy balance and the aging process in healthy individuals. This relationship is altered in individuals with Type 2 diabetes.