6 resultados para Harris, Timothy.

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimuli from one family of complex motions are defined by their spiral pitch, where cardinal axes represent signed expansion and rotation. Intermediate spirals are represented by intermediate pitches. It is well established that vision contains mechanisms that sum over space and direction to detect these stimuli (Morrone et al., Nature 376 (1995) 507) and one possibility is that four cardinal mechanisms encode the entire family. We extended earlier work (Meese & Harris, Vision Research 41 (2001) 1901) using subthreshold summation of random dot kinematograms and a two-interval forced choice technique to investigate this possibility. In our main experiments, the spiral pitch of one component was fixed and that of another was varied in steps of 15° relative to the first. Regardless of whether the fixed component was aligned with cardinal axes or an intermediate spiral, summation to-coherence-threshold between the two components declined as a function of their difference in spiral pitch. Similar experiments showed that none of the following were critical design features or stimulus parameters for our results: superposition of signal dots, limited life-time dots, the presence of speed gradients, stimulus size or the number of dots. A simplex algorithm was used to fit models containing mechanisms spaced at a pitch of either 90° (cardinal model) or 45° (cardinal+model) and combined using a fourth-root summation rule. For both models, direction half-bandwidth was equated for all mechanisms and was the only free parameter. Only the cardinal+model could account for the full set of results. We conclude that the detection of complex motion in human vision requires both cardinal and spiral mechanisms with a half-bandwidth of approximately 46°. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that optic flow - the smooth transformation of the retinal image experienced by a moving observer - contains valuable information about the three-dimensional layout of the environment. From psychophysical and neurophysiological experiments, specialised mechanisms responsive to components of optic flow (sometimes called complex motion) such as expansion and rotation have been inferred. However, it remains unclear (a) whether the visual system has mechanisms for processing the component of deformation and (b) whether there are multiple mechanisms that function independently from each other. Here, we investigate these issues using random-dot patterns and a forced-choice subthreshold summation technique. In experiment 1, we manipulated the size of a test region that was permitted to contain signal and found substantial spatial summation for signal components of translation, expansion, rotation, and deformation embedded in noise. In experiment 2, little or no summation was found for the superposition of orthogonal pairs of complex motion patterns (eg expansion and rotation), consistent with probability summation between pairs of independent detectors. Our results suggest that optic-flow components are detected by mechanisms that are specialised for particular patterns of complex motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing evidence from psychophysics and single-unit recordings suggests specialised mechanisms in the primate visual system for the detection of complex motion patterns such as expansion and rotation. Here we used a subthreshold summation technique to determine the direction tuning functions of the detecting mechanisms. We measured thresholds for discriminating noise and signal + noise for pairs of superimposed complex motion patterns (signal A and B) carried by random-dot stimuli in a circular 5° field. For expansion, rotation, deformation and translation we found broad tuning functions approximated by cos(d), where d is the difference in dot directions for signal A and B. These data were well described by models in which either: (a) cardinal mechanisms had direction bandwidths (half-widths) of around 60° or (b) the number of mechanisms was increased and their half-width was reduced to about 40°. When d = 180° we found summation to be greater than probability summation for expansion, rotation and translation, consistent with the idea that mechanisms for these stimuli are constructed from subunits responsive to relative motion. For deformation, however, we found sensitivity declined when d = 180°, suggesting antagonistic input from directional subunits in the deformation mechanism. This is a necessary property for a mechanism whose job is to extract the deformation component from the optic flow field. © 2001 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study the structure and function of a protein, it is generally required that the protein in question is purified away from all others. For soluble proteins, this process is greatly aided by the lack of any restriction on the free and independent diffusion of individual protein particles in three dimensions. This is not the case for membrane proteins, as the membrane itself forms a continuum that joins the proteins within the membrane with one another. It is therefore essential that the membrane is disrupted in order to allow separation and hence purification of membrane proteins. In the present review, we examine recent advances in the methods employed to separate membrane proteins before purification. These approaches move away from solubilization methods based on the use of small surfactants, which have been shown to suffer from significant practical problems. Instead, the present review focuses on methods that stem from the field of nanotechnology and use a range of reagents that fragment the membrane into nanometre-scale particles containing the protein complete with the local membrane environment. In particular, we examine a method employing the amphipathic polymer poly(styrene-co-maleic acid), which is able to reversibly encapsulate the membrane protein in a 10 nm disc-like structure ideally suited to purification and further biochemical study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmembrane domain proteins of the claudin superfamily are the major structural components of cellular tight junctions. One family member, claudin-1, also associates with tetraspanin CD81 as part of a receptor complex that is essential for hepatitis C virus (HCV) infection of the liver. To understand the molecular basis of claudin-1/CD81 association we previously produced and purified milligram quantities of functional, full-length CD81, which binds a soluble form of HCV E2 glycoprotein (sE2). Here we report the production, purification and characterization of claudin-1. Both yeast membrane-bound and detergent-extracted, purified claudin-1 were antigenic and recognized by specific antibodies. Analytical ultracentrifugation demonstrated that extraction with n-octyl-ß-d-glucopyranoside yielded monodispersed, dimeric pools of claudin-1 while extraction with profoldin-8 or n-decylphosphocholine yielded a dynamic mixture of claudin-1 oligomers. Neither form bound sE2 in line with literature expectations, while further functional analysis was hampered by the finding that incorporation of claudin-1 into proteoliposomes rendered them intractable to study. Dynamic light scattering demonstrated that claudin-1 oligomers associate with CD81 in vitro in a defined molar ratio of 1:2 and that complex formation was enhanced by the presence of cholesteryl hemisuccinate. Attempts to assay the complex biologically were limited by our finding that claudin-1 affects the properties of proteoliposomes. We conclude that recombinant, correctly-folded, full-length claudin-1 can be produced in yeast membranes, that it can be extracted in different oligomeric forms that do not bind sE2 and that a dynamic preparation can form a specific complex with CD81 in vitro in the absence of any other cellular components. These findings pave the way for the structural characterization of claudin-1 alone and in complex with CD81.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The Unified Huntington’s Disease Rating Scale (UHDRS) is the principal means of assessing motor impairment in Huntington disease but is subjective and generally limited to in-clinic assessments. Objective: To evaluate the feasibility and ability of wearable sensors to measure motor impairment in individuals with Huntington disease in the clinic and at home. Methods: Participants with Huntington disease and controls were asked to wear five accelerometer-based sensors attached to the chest and each limb for standardized, in-clinic assessments and for one day at home. A secondchest sensor was worn for six additional days at home. Gait measures were compared between controls, participants with Huntington disease, and participants with Huntington disease grouped by UHDRS total motor score using Cohen’s d values. Results: Fifteen individuals with Huntington disease and five controls completed the study. Sensor data were successfully captured from 18 of the 20 participants at home. In the clinic, the standard deviation of step time (timebetween consecutive steps) was increased in Huntington disease (p<0.0001; Cohen’s d=2.61) compared to controls. At home with additional observations, significant differences were observed in seven additional gait measures. The gait of individuals with higher total motor scores (50 or more) differed significantly from those with lower total motor scores (below 50) on multiple measures at home. Conclusions: In this pilot study, the use of wearable sensors in clinic and at home was feasible and demonstrated gait differences between controls, participants with Huntington disease, and participants with Huntington diseasegrouped by motor impairment.