4 resultados para HYDROXY ACIDS
em Aston University Research Archive
Resumo:
The aims of this project were:1) the synthesis of a range of new polyether-based vinylic monomers and their incorporation into poly(2-hydroxyethyl methacrylate) (poly(HEMA)) based hydrogel networks, of interest to the contact lens industry.2) the synthesis of a range of alkyltartronic acids, and their derivatives. These molecules may ultimately be used to produce functionalised poly(-hydroxy acids) of potential interest in either drug delivery or surgical suture applications. The novel syntheses of a range of both methoxy poly(ethylene glycol) acrylates (MPEGAs) and poly(ethylene glycol) acrylates (PEGAs) are described. Products were obtained in very good yields. These new polyether-based vinylic monomers were copolymerised with 2-hydroxyethyl methacrylate (HEMA) to produce a range of hydrogels. The equilibrium water contents (EWC) and surface properties of these copolymers containing linear polyethers were examined. It was found that the EWC was enhanced by the presence of the hydrophilic polyether chains.Results suggest that the polyether side chains express themselves at the polymer surface, thus dictating the surface properties of the gels. Consequentially, this leads to an advantageous reduction in the surface adhesion of biological species. A synthesis of a range of alkyltartronic acids is also described. The acids prepared were obtained in very good yields using a novel four-stage synthesis. These acids were modified to give potassium monoethyl alkyltartronates. Although no polyesterification is described in this thesis, these modified alkyltartronic acid derivatives are considered to be potentially excellent starting materials for poly (alkyltartronic acid) synthesis via anhydrocarboxylate or anhydrosulphite cyclic monomers.
Resumo:
[Rh(OH)6]3− intercalated Ni–Zn mixed basic salt (Rh/NiZn) acts as an efficient catalyst for the hydrophenylation of internal alkynes with arylboronic acids under mild conditions. The turnover number per Rh site approached 740 in the reaction between 4-octyne and phenylboronic acid. The catalytic monomeric Rh(III) complex is stabilised within the NiZn interlayers, attributable to a strong electrostatic interaction, promoting its re-use.
Resumo:
Intercalation of an in situ prepared [Rh(OH)6]3- complex into an anion exchangeable Ni-Zn layered hydroxy double salt (Rh/NiZn) was demonstrated. The resulting Rh/NiZn effectively catalyzed the 1,4-addition of diverse enones and phenylboronic acids to their corresponding β-substituted carbonyl compounds. In the case of 2-cyclohexen-1-one and phenylboronic acid, a turnover frequency (TOF) of 920 h-1 based on Rh was achieved. The [Rh(OH)6]3- complex maintained its original monomeric trivalent state within the NiZn interlayer following catalysis, attributable to a strong electrostatic interaction between the NiZn host and anionic Rh(III) complex.