2 resultados para HYDROLYSATE
em Aston University Research Archive
Resumo:
A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF). Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.
Resumo:
1. The ability of myo-inositol polyphosphates to inhibit iron-catalysed hydroxyl radical formation was studied in a hypoxanthine/xanthine oxidase system [Graf, Empson and Eaton (1987) J. Biol. Chem. 262, 11647-11650]. Fe3+ present in the assay reagents supported some radical formation, and a standard assay, with 5 microM Fe3+ added, was used to investigate the specificity of compounds which could inhibit radical generation. 2. InsP6 (phytic acid) was able to inhibit radical formation in this assay completely. In this respect it was similar to the effects of the high affinity Fe3+ chelator Desferral, and dissimilar to the effects of EDTA which, even at high concentrations, still allowed detectable radical formation to take place. 3. The six isomers of InsP5 were purified from an alkaline hydrolysate of InsP6 (four of them as two enantiomeric mixtures) and they were compared with InsP6 in this assay. Ins(1,2,3,4,6)P5 and D/L-Ins(1,2,3,4,5)P5 were similar to InsP6 in that they caused a complete inhibition of iron-catalysed radical formation at > 30 microM. Ins(1,3,4,5,6)P5 and D/L-Ins(1,2,4,5,6)P5, however, were markedly less potent than InsP6, and did not inhibit radical formation completely; even when Ins(1,3,4,5,6)P5 was added up to 600 microM, significant radical formation was still detected. Thus InsP5s lacking 2 or 1/3 phosphates are in this respect qualitatively different from InsP6 and the other InsP5s. 4. scyllo-Inositol hexakisphosphate was also tested, and although it caused a greater inhibition than Ins(1,3,4,5,6)P5, it too still allowed detectable free radical formation even at 600 microM. 5. We conclude that the 1,2,3 (equatorial-axial-equatorial) phosphate grouping in InsP6 has a conformation that uniquely provides a specific interaction with iron to inhibit totally its ability to catalyse hydroxyl radical formation; we suggest that a physiological function of InsP6 might be to act as a 'safe' binding site for iron during its transport through the cytosol or cellular organelles